BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 26230839)

  • 41. Relationships among vernalization, shoot apex development and frost tolerance in wheat.
    Prásil IT; Prásilová P; Pánková K
    Ann Bot; 2004 Sep; 94(3):413-8. PubMed ID: 15277245
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Revealing hereditary variation of winter hardiness in cereals].
    Netsvetaev VP; Netsvetaeva OV
    Genetika; 2004 Nov; 40(11):1502-8. PubMed ID: 15612569
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Determination compliance abilities of some triticale varieties and comparison with wheat in Southeastern Anatolia conditions of Turkey.
    Kendal E; Tekdal S; Aktas H; Karaman M
    Commun Agric Appl Biol Sci; 2014; 79(4):192-200. PubMed ID: 26072587
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Development of a model system to identify differences in spring and winter oat.
    Chawade A; Lindén P; Bräutigam M; Jonsson R; Jonsson A; Moritz T; Olsson O
    PLoS One; 2012; 7(1):e29792. PubMed ID: 22253782
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Evaluation of crossability between triticale (X Triticosecale Wittmack) and common wheat, durum wheat and rye.
    Hills MJ; Hall LM; Messenger DF; Graf RJ; Beres BL; Eudes F
    Environ Biosafety Res; 2007; 6(4):249-57. PubMed ID: 18289500
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Freezing resistance, safety margins, and survival vary among big sagebrush populations across the western United States.
    Lazarus BE; Germino MJ; Richardson BA
    Am J Bot; 2019 Jul; 106(7):922-934. PubMed ID: 31294835
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Chlorophyll
    Østrem L; Rapacz M; Larsen A; Marum P; Rognli OA
    Front Plant Sci; 2018; 9():1200. PubMed ID: 30177939
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Differential expression of two winter wheat alpha-tubulin genes during cold acclimation.
    Christov NK; Imai R; Blume Y
    Cell Biol Int; 2008 May; 32(5):574-8. PubMed ID: 18162419
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Impacts of extreme winter warming events on plant physiology in a sub-Arctic heath community.
    Bokhorst S; Bjerke JW; Davey MP; Taulavuori K; Taulavuori E; Laine K; Callaghan TV; Phoenix GK
    Physiol Plant; 2010 Oct; 140(2):128-40. PubMed ID: 20497369
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Using Arabidopsis thaliana as a model to study subzero acclimation in small grains.
    Livingston DP; Van K; Premakumar R; Tallury SP; Herman EM
    Cryobiology; 2007 Apr; 54(2):154-63. PubMed ID: 17316598
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Post-acclimation transcriptome adjustment is a major factor in freezing tolerance of winter wheat.
    Skinner DZ
    Funct Integr Genomics; 2009 Nov; 9(4):513-23. PubMed ID: 19488798
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Estimating leaf SPAD values of freeze-damaged winter wheat using continuous wavelet analysis.
    Wang HF; Huo ZG; Zhou GS; Liao QH; Feng HK; Wu L
    Plant Physiol Biochem; 2016 Jan; 98():39-45. PubMed ID: 26610092
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Sub-zero cold tolerance of Spartina pectinata (prairie cordgrass) and Miscanthus × giganteus: candidate bioenergy crops for cool temperate climates.
    Friesen PC; Peixoto Mde M; Lee DK; Sage RF
    J Exp Bot; 2015 Jul; 66(14):4403-13. PubMed ID: 25873680
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Deacclimation and reacclimation processes in winter wheat: novel perspectives from time-series transcriptome analysis.
    Vaitkevičiūtė G; Aleliūnas A; Brazauskas G; Armonienė R
    Front Plant Sci; 2024; 15():1395830. PubMed ID: 38807787
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effect of light on the gene expression and hormonal status of winter and spring wheat plants during cold hardening.
    Majláth I; Szalai G; Soós V; Sebestyén E; Balázs E; Vanková R; Dobrev PI; Tari I; Tandori J; Janda T
    Physiol Plant; 2012 Jun; 145(2):296-314. PubMed ID: 22257084
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Photosynthesis-dependent physiological and genetic crosstalk between cold acclimation and cold-induced resistance to fungal pathogens in triticale (Triticosecale Wittm.).
    Szechyńska-Hebda M; Wąsek I; Gołębiowska-Pikania G; Dubas E; Żur I; Wędzony M
    J Plant Physiol; 2015 Apr; 177():30-43. PubMed ID: 25666539
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Plant responses to cold: Transcriptome analysis of wheat.
    Winfield MO; Lu C; Wilson ID; Coghill JA; Edwards KJ
    Plant Biotechnol J; 2010 Sep; 8(7):749-71. PubMed ID: 20561247
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Light-quality and temperature-dependent CBF14 gene expression modulates freezing tolerance in cereals.
    Novák A; Boldizsár Á; Ádám É; Kozma-Bognár L; Majláth I; Båga M; Tóth B; Chibbar R; Galiba G
    J Exp Bot; 2016 Mar; 67(5):1285-95. PubMed ID: 26712822
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Influence of simulated acid snow stress on leaf tissue of wintering herbaceous plants.
    Inada H; Nagao M; Fujikawa S; Arakawa K
    Plant Cell Physiol; 2006 Apr; 47(4):504-12. PubMed ID: 16481360
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Effects of ozone stress upon winter wheat photosynthesis, lipid peroxidation and antioxidant systems].
    Zheng YF; Hu CD; Wu RJ; Liu RN; Zhao Z; Zhang JE
    Huan Jing Ke Xue; 2010 Jul; 31(7):1643-51. PubMed ID: 20825039
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.