BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 26230854)

  • 1. Bioinformatic Challenges in Clinical Diagnostic Application of Targeted Next Generation Sequencing: Experience from Pheochromocytoma.
    Crona J; Ljungström V; Welin S; Walz MK; Hellman P; Björklund P
    PLoS One; 2015; 10(7):e0133210. PubMed ID: 26230854
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Silent genetic alterations identified by targeted next-generation sequencing in pheochromocytoma/paraganglioma: A clinicopathological correlations.
    Pillai S; Gopalan V; Lo CY; Liew V; Smith RA; Lam AK
    Exp Mol Pathol; 2017 Feb; 102(1):41-46. PubMed ID: 27986441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PheoSeq: A Targeted Next-Generation Sequencing Assay for Pheochromocytoma and Paraganglioma Diagnostics.
    Currás-Freixes M; Piñeiro-Yañez E; Montero-Conde C; Apellániz-Ruiz M; Calsina B; Mancikova V; Remacha L; Richter S; Ercolino T; Rogowski-Lehmann N; Deutschbein T; Calatayud M; Guadalix S; Álvarez-Escolá C; Lamas C; Aller J; Sastre-Marcos J; Lázaro C; Galofré JC; Patiño-García A; Meoro-Avilés A; Balmaña-Gelpi J; De Miguel-Novoa P; Balbín M; Matías-Guiu X; Letón R; Inglada-Pérez L; Torres-Pérez R; Roldán-Romero JM; Rodríguez-Antona C; Fliedner SMJ; Opocher G; Pacak K; Korpershoek E; de Krijger RR; Vroonen L; Mannelli M; Fassnacht M; Beuschlein F; Eisenhofer G; Cascón A; Al-Shahrour F; Robledo M
    J Mol Diagn; 2017 Jul; 19(4):575-588. PubMed ID: 28552549
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Denaturing high performance liquid chromatography detection of SDHB, SDHD, and VHL germline mutations in pheochromocytoma.
    Meyer-Rochow GY; Smith JM; Richardson AL; Marsh DJ; Sidhu SB; Robinson BG; Benn DE
    J Surg Res; 2009 Nov; 157(1):55-62. PubMed ID: 19215943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of amplicon-based NGS data from neurological disease gene panels: a new method for allele drop-out management.
    Zucca S; Villaraggia M; Gagliardi S; Grieco GS; Valente M; Cereda C; Magni P
    BMC Bioinformatics; 2016 Nov; 17(Suppl 12):339. PubMed ID: 28185542
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Concordance and reproducibility of a next generation mtGenome sequencing method for high-quality samples using the Illumina MiSeq.
    Peck MA; Brandhagen MD; Marshall C; Diegoli TM; Irwin JA; Sturk-Andreaggi K
    Forensic Sci Int Genet; 2016 Sep; 24():103-111. PubMed ID: 27368088
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Next-generation sequencing for the diagnosis of hereditary pheochromocytoma and paraganglioma syndromes.
    Toledo RA; Dahia PL
    Curr Opin Endocrinol Diabetes Obes; 2015 Jun; 22(3):169-79. PubMed ID: 25871962
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Next-generation sequencing in the clinical genetic screening of patients with pheochromocytoma and paraganglioma.
    Crona J; Verdugo AD; Granberg D; Welin S; Stålberg P; Hellman P; Björklund P
    Endocr Connect; 2013 Jun; 2(2):104-11. PubMed ID: 23781326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clinical evaluation of panel testing by next-generation sequencing (NGS) for gene mutations in myeloid neoplasms.
    Au CH; Wa A; Ho DN; Chan TL; Ma ES
    Diagn Pathol; 2016 Jan; 11():11. PubMed ID: 26796102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioinformatic data processing pipelines in support of next-generation sequencing-based HIV drug resistance testing: the Winnipeg Consensus.
    Ji H; Enns E; Brumme CJ; Parkin N; Howison M; Lee ER; Capina R; Marinier E; Avila-Rios S; Sandstrom P; Van Domselaar G; Harrigan R; Paredes R; Kantor R; Noguera-Julian M
    J Int AIDS Soc; 2018 Oct; 21(10):e25193. PubMed ID: 30350345
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance evaluation of pipelines for mapping, variant calling and interval padding, for the analysis of NGS germline panels.
    Zanti M; Michailidou K; Loizidou MA; Machattou C; Pirpa P; Christodoulou K; Spyrou GM; Kyriacou K; Hadjisavvas A
    BMC Bioinformatics; 2021 Apr; 22(1):218. PubMed ID: 33910496
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Whole exome sequencing is an efficient and sensitive method for detection of germline mutations in patients with phaeochromcytomas and paragangliomas.
    McInerney-Leo AM; Marshall MS; Gardiner B; Benn DE; McFarlane J; Robinson BG; Brown MA; Leo PJ; Clifton-Bligh RJ; Duncan EL
    Clin Endocrinol (Oxf); 2014 Jan; 80(1):25-33. PubMed ID: 24102379
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Next-Generation Sequencing Workflow for NSCLC Critical Samples Using a Targeted Sequencing Approach by Ion Torrent PGM™ Platform.
    Vanni I; Coco S; Truini A; Rusmini M; Dal Bello MG; Alama A; Banelli B; Mora M; Rijavec E; Barletta G; Genova C; Biello F; Maggioni C; Grossi F
    Int J Mol Sci; 2015 Dec; 16(12):28765-82. PubMed ID: 26633390
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Semiquantitative 123I-Metaiodobenzylguanidine Scintigraphy to Distinguish Pheochromocytoma and Paraganglioma from Physiologic Adrenal Uptake and Its Correlation with Genotype-Dependent Expression of Catecholamine Transporters.
    van Berkel A; Rao JU; Lenders JW; Pellegata NS; Kusters B; Piscaer I; Hermus AR; Plantinga TS; Langenhuijsen JF; Vriens D; Janssen MJ; Gotthardt M; Timmers HJ
    J Nucl Med; 2015 Jun; 56(6):839-46. PubMed ID: 25883126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeted next-generation sequencing can replace Sanger sequencing in clinical diagnostics.
    Sikkema-Raddatz B; Johansson LF; de Boer EN; Almomani R; Boven LG; van den Berg MP; van Spaendonck-Zwarts KY; van Tintelen JP; Sijmons RH; Jongbloed JD; Sinke RJ
    Hum Mutat; 2013 Jul; 34(7):1035-42. PubMed ID: 23568810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integration of Technical, Bioinformatic, and Variant Assessment Approaches in the Validation of a Targeted Next-Generation Sequencing Panel for Myeloid Malignancies.
    Thomas M; Sukhai MA; Zhang T; Dolatshahi R; Harbi D; Garg S; Misyura M; Pugh T; Stockley TL; Kamel-Reid S
    Arch Pathol Lab Med; 2017 Jun; 141(6):759-775. PubMed ID: 28557600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Next-generation sequencing using a pre-designed gene panel for the molecular diagnosis of congenital disorders in pediatric patients.
    Lim EC; Brett M; Lai AH; Lee SP; Tan ES; Jamuar SS; Ng IS; Tan EC
    Hum Genomics; 2015 Dec; 9():33. PubMed ID: 26666243
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amplicon sequencing of colorectal cancer: variant calling in frozen and formalin-fixed samples.
    Betge J; Kerr G; Miersch T; Leible S; Erdmann G; Galata CL; Zhan T; Gaiser T; Post S; Ebert MP; Horisberger K; Boutros M
    PLoS One; 2015; 10(5):e0127146. PubMed ID: 26010451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance evaluation of the next-generation sequencing approach for molecular diagnosis of hereditary hearing loss.
    Sivakumaran TA; Husami A; Kissell D; Zhang W; Keddache M; Black AP; Tinkle BT; Greinwald JH; Zhang K
    Otolaryngol Head Neck Surg; 2013 Jun; 148(6):1007-16. PubMed ID: 23525850
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Edge effects in calling variants from targeted amplicon sequencing.
    Satya RV; DiCarlo J
    BMC Genomics; 2014 Dec; 15(1):1073. PubMed ID: 25480444
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.