These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 26230969)

  • 21. Modeling the Maximum Spreading of Liquid Droplets Impacting Wetting and Nonwetting Surfaces.
    Lee JB; Derome D; Guyer R; Carmeliet J
    Langmuir; 2016 Feb; 32(5):1299-308. PubMed ID: 26743317
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of molecular branching and surface wettability on solid-liquid surface tension and line-tension of liquid alkane surface nanodroplets.
    Jabbarzadeh A
    J Colloid Interface Sci; 2024 Jul; 666():355-370. PubMed ID: 38603878
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Solid-liquid-liquid wettability and its prediction with surface free energy models.
    Stammitti-Scarpone A; Acosta EJ
    Adv Colloid Interface Sci; 2019 Feb; 264():28-46. PubMed ID: 30396508
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Wetting behavior of spherical nanoparticles at a vapor-liquid interface: a density functional theory study.
    Zeng M; Mi J; Zhong C
    Phys Chem Chem Phys; 2011 Mar; 13(9):3932-41. PubMed ID: 21212890
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Simultaneous spreading and evaporation: recent developments.
    Semenov S; Trybala A; Rubio RG; Kovalchuk N; Starov V; Velarde MG
    Adv Colloid Interface Sci; 2014 Apr; 206():382-98. PubMed ID: 24075076
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Young's equation revisited.
    Makkonen L
    J Phys Condens Matter; 2016 Apr; 28(13):135001. PubMed ID: 26940644
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Status of the three-phase line tension: a review.
    Amirfazli A; Neumann AW
    Adv Colloid Interface Sci; 2004 Aug; 110(3):121-41. PubMed ID: 15328061
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of contact line curvature on solid-fluid surface tensions without line tension.
    Ward CA; Wu J
    Phys Rev Lett; 2008 Jun; 100(25):256103. PubMed ID: 18643678
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interpretation of Young's equation for a liquid droplet on a flat and smooth solid surface: Mechanical and thermodynamic routes with a simple Lennard-Jones liquid.
    Yamaguchi Y; Kusudo H; Surblys D; Omori T; Kikugawa G
    J Chem Phys; 2019 Jan; 150(4):044701. PubMed ID: 30709259
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Wetting on fractal superhydrophobic surfaces from "core-shell" particles: a comparison of theory and experiment.
    Synytska A; Ionov L; Grundke K; Stamm M
    Langmuir; 2009 Mar; 25(5):3132-6. PubMed ID: 19437778
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Estimation of line tension and contact angle from heterogeneous nucleation experimental data.
    Hienola AI; Winkler PM; Wagner PE; Vehkamäki H; Lauri A; Napari I; Kulmala M
    J Chem Phys; 2007 Mar; 126(9):094705. PubMed ID: 17362116
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Confocal Raman studies of the evolution of the physical state of mixed phthalic acid/ammonium sulfate aerosol droplets and the effect of substrates.
    Zhou Q; Pang SF; Wang Y; Ma JB; Zhang YH
    J Phys Chem B; 2014 Jun; 118(23):6198-205. PubMed ID: 24839869
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Liquid Young's Law on SLIPS: Liquid-Liquid Interfacial Tensions and Zisman Plots.
    McHale G; Afify N; Armstrong S; Wells GG; Ledesma-Aguilar R
    Langmuir; 2022 Aug; 38(32):10032-10042. PubMed ID: 35921631
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A theory for the morphological dependence of wetting on a physically patterned solid surface.
    Shahraz A; Borhan A; Fichthorn KA
    Langmuir; 2012 Oct; 28(40):14227-37. PubMed ID: 22998115
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Liquid-vapor oscillations of water nanoconfined between hydrophobic disks: thermodynamics and kinetics.
    Xu L; Molinero V
    J Phys Chem B; 2010 Jun; 114(21):7320-8. PubMed ID: 20446704
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Prediction of solid-fluid interfacial tension and contact angle.
    Bahramian A; Danesh A
    J Colloid Interface Sci; 2004 Nov; 279(1):206-12. PubMed ID: 15380431
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Butler-Sugimoto monomolecular bilayer interface model: the effect of oxygen on the surface tension of a liquid metal and its wetting of a ceramic.
    Yen PS; Datta R
    J Colloid Interface Sci; 2014 Jul; 426():314-23. PubMed ID: 24863799
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Atmospheric Aqueous Aerosol Surface Tensions: Isotherm-Based Modeling and Biphasic Microfluidic Measurements.
    Boyer HC; Dutcher CS
    J Phys Chem A; 2017 Jun; 121(25):4733-4742. PubMed ID: 28498664
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Wetting and contact-line effects for spherical and cylindrical droplets on graphene layers: a comparative molecular-dynamics investigation.
    Scocchi G; Sergi D; D'Angelo C; Ortona A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Dec; 84(6 Pt 1):061602. PubMed ID: 22304097
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of liquid droplet surface tension on impact dynamics over hierarchical nanostructure surfaces.
    Baek S; Moon HS; Kim W; Jeon S; Yong K
    Nanoscale; 2018 Sep; 10(37):17842-17851. PubMed ID: 30221273
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.