BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 26231041)

  • 1. Resection is responsible for loss of transcription around a double-strand break in Saccharomyces cerevisiae.
    Manfrini N; Clerici M; Wery M; Colombo CV; Descrimes M; Morillon A; d'Adda di Fagagna F; Longhese MP
    Elife; 2015 Jul; 4():. PubMed ID: 26231041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mec1/ATR regulates the generation of single-stranded DNA that attenuates Tel1/ATM signaling at DNA ends.
    Clerici M; Trovesi C; Galbiati A; Lucchini G; Longhese MP
    EMBO J; 2014 Feb; 33(3):198-216. PubMed ID: 24357557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coupling end resection with the checkpoint response at DNA double-strand breaks.
    Villa M; Cassani C; Gobbini E; Bonetti D; Longhese MP
    Cell Mol Life Sci; 2016 Oct; 73(19):3655-63. PubMed ID: 27141941
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual role for Saccharomyces cerevisiae Tel1 in the checkpoint response to double-strand breaks.
    Mantiero D; Clerici M; Lucchini G; Longhese MP
    EMBO Rep; 2007 Apr; 8(4):380-7. PubMed ID: 17347674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gradual implementation of the meiotic recombination program via checkpoint pathways controlled by global DSB levels.
    Joshi N; Brown MS; Bishop DK; Börner GV
    Mol Cell; 2015 Mar; 57(5):797-811. PubMed ID: 25661491
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mec1 Modulates Interhomolog Crossover and Interplays with Tel1 at Post Double-Strand Break Stages.
    Lee MS; Joo JW; Choi H; Kang HA; Kim K
    J Microbiol Biotechnol; 2020 Mar; 30(3):469-475. PubMed ID: 31847509
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RNA-processing proteins regulate Mec1/ATR activation by promoting generation of RPA-coated ssDNA.
    Manfrini N; Trovesi C; Wery M; Martina M; Cesena D; Descrimes M; Morillon A; d'Adda di Fagagna F; Longhese MP
    EMBO Rep; 2015 Feb; 16(2):221-31. PubMed ID: 25527408
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RSC functions as an early double-strand-break sensor in the cell's response to DNA damage.
    Liang B; Qiu J; Ratnakumar K; Laurent BC
    Curr Biol; 2007 Aug; 17(16):1432-7. PubMed ID: 17689960
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of Double-Strand Break End-Tethering during Gene Conversion in Saccharomyces cerevisiae.
    Jain S; Sugawara N; Haber JE
    PLoS Genet; 2016 Apr; 12(4):e1005976. PubMed ID: 27074148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Caffeine impairs resection during DNA break repair by reducing the levels of nucleases Sae2 and Dna2.
    Tsabar M; Eapen VV; Mason JM; Memisoglu G; Waterman DP; Long MJ; Bishop DK; Haber JE
    Nucleic Acids Res; 2015 Aug; 43(14):6889-901. PubMed ID: 26019182
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distinct Cdk1 requirements during single-strand annealing, noncrossover, and crossover recombination.
    Trovesi C; Falcettoni M; Lucchini G; Clerici M; Longhese MP
    PLoS Genet; 2011 Aug; 7(8):e1002263. PubMed ID: 21901114
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Slx4 and Rtt107 control checkpoint signalling and DNA resection at double-strand breaks.
    Dibitetto D; Ferrari M; Rawal CC; Balint A; Kim T; Zhang Z; Smolka MB; Brown GW; Marini F; Pellicioli A
    Nucleic Acids Res; 2016 Jan; 44(2):669-82. PubMed ID: 26490958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Saccharomyces cerevisiae PDS1 and RAD9 checkpoint genes control different DNA double-strand break repair pathways.
    DeMase D; Zeng L; Cera C; Fasullo M
    DNA Repair (Amst); 2005 Jan; 4(1):59-69. PubMed ID: 15533838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell cycle regulation of homologous recombination in Saccharomyces cerevisiae.
    Mathiasen DP; Lisby M
    FEMS Microbiol Rev; 2014 Mar; 38(2):172-84. PubMed ID: 24483249
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Break dosage, cell cycle stage and DNA replication influence DNA double strand break response.
    Zierhut C; Diffley JF
    EMBO J; 2008 Jul; 27(13):1875-85. PubMed ID: 18511906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recruitment of Scc2/4 to double-strand breaks depends on γH2A and DNA end resection.
    Scherzer M; Giordano F; Ferran MS; Ström L
    Life Sci Alliance; 2022 May; 5(5):. PubMed ID: 35086935
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ctf18 is required for homologous recombination-mediated double-strand break repair.
    Ogiwara H; Ohuchi T; Ui A; Tada S; Enomoto T; Seki M
    Nucleic Acids Res; 2007; 35(15):4989-5000. PubMed ID: 17636314
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chromosome position determines the success of double-strand break repair.
    Lee CS; Wang RW; Chang HH; Capurso D; Segal MR; Haber JE
    Proc Natl Acad Sci U S A; 2016 Jan; 113(2):E146-54. PubMed ID: 26715752
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resection of a DNA Double-Strand Break by Alkaline Gel Electrophoresis and Southern Blotting.
    Casari E; Gobbini E; Clerici M; Longhese MP
    Methods Mol Biol; 2021; 2153():33-45. PubMed ID: 32840770
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overexpression of Rad51 inhibits double-strand break-induced homologous recombination but does not affect gene conversion tract lengths.
    Paffett KS; Clikeman JA; Palmer S; Nickoloff JA
    DNA Repair (Amst); 2005 Jun; 4(6):687-98. PubMed ID: 15878310
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.