These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 26231125)

  • 1. Energy analysis for the production of biodiesel in a spiral reactor using supercritical tert-butyl methyl ether (MTBE).
    Farobie O; Matsumura Y
    Bioresour Technol; 2015 Nov; 196():65-71. PubMed ID: 26231125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparative study of biodiesel production using methanol, ethanol, and tert-butyl methyl ether (MTBE) under supercritical conditions.
    Farobie O; Matsumura Y
    Bioresour Technol; 2015 Sep; 191():306-11. PubMed ID: 26004381
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous production of biodiesel under supercritical methyl acetate conditions: Experimental investigation and kinetic model.
    Farobie O; Matsumura Y
    Bioresour Technol; 2017 Oct; 241():720-725. PubMed ID: 28622654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental study of methyl tert-butyl ether as an oxygenated additive in diesel and Calophyllum inophyllum methyl ester blended fuel in CI engine.
    Bragadeshwaran A; Kasianantham N; Ballusamy S; Tarun KR; Dharmaraj AP; Kaisan MU
    Environ Sci Pollut Res Int; 2018 Nov; 25(33):33573-33590. PubMed ID: 30269280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biodegradation of methyl tert-butyl ether as a sole carbon source by aerobic granules cultivated in a sequencing batch reactor.
    Zhang LL; Zhu RY; Chen JM; Cai WM
    Bioprocess Biosyst Eng; 2008 Oct; 31(6):527-34. PubMed ID: 18188607
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biodegradation of methyl t-butyl ether by aerobic granules under a cosubstrate condition.
    Zhang LL; Chen JM; Fang F
    Appl Microbiol Biotechnol; 2008 Mar; 78(3):543-50. PubMed ID: 18183384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anaerobic biodegradation of methyl tert-butyl ether under iron-reducing conditions in batch and continuous-flow cultures.
    Pruden A; Sedran MA; Suidan MT; Venosa AD
    Water Environ Res; 2005; 77(3):297-303. PubMed ID: 15969296
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biodegradation of Methyl Tertiary Butyl Ether (MTBE) by a Microbial Consortium in a Continuous Up-Flow Packed-Bed Biofilm Reactor: Kinetic Study, Metabolite Identification and Toxicity Bioassays.
    Alfonso-Gordillo G; Flores-Ortiz CM; Morales-Barrera L; Cristiani-Urbina E
    PLoS One; 2016; 11(12):e0167494. PubMed ID: 27907122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anaerobic biodegradation of methyl tert-butyl ether and tert-butyl alcohol in petrochemical wastewater.
    Ghasemian M; Amin MM; Morgenroth E; Jaafarzadeh N
    Environ Technol; 2012 Sep; 33(16-18):1937-43. PubMed ID: 23240186
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbial degradation of methyl tert-butyl ether and tert-butyl alcohol in the subsurface.
    Schmidt TC; Schirmer M; Weiss H; Haderlein SB
    J Contam Hydrol; 2004 Jun; 70(3-4):173-203. PubMed ID: 15134874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzymes and genes involved in the aerobic biodegradation of methyl tert-butyl ether (MTBE).
    Lopes Ferreira N; Malandain C; Fayolle-Guichard F
    Appl Microbiol Biotechnol; 2006 Sep; 72(2):252-62. PubMed ID: 16804692
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aerobic MTBE biodegradation in the presence of BTEX by two consortia under batch and semi-batch conditions.
    Raynal M; Pruden A
    Biodegradation; 2008 Apr; 19(2):269-82. PubMed ID: 17562189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Social microbial inocula confer functional stability in a methyl tert-butyl ether extractive membrane biofilm bioreactor.
    Purswani J; Guisado IM; Coello-Cabezas J; González-López J; Pozo C
    Environ Pollut; 2019 Jan; 244():855-860. PubMed ID: 30390459
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biodiesel synthesis from Calophyllum inophyllum oil with different supercritical fluids.
    Lamba N; Gupta K; Modak JM; Madras G
    Bioresour Technol; 2017 Oct; 241():767-774. PubMed ID: 28628981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biodegradation of methyl tert-butyl ether under various substrate conditions.
    Pruden A; Suidan MT; Venosa AD; Wilson GJ
    Environ Sci Technol; 2001 Nov; 35(21):4235-41. PubMed ID: 11718336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Membrane technology as a promising alternative in biodiesel production: a review.
    Shuit SH; Ong YT; Lee KT; Subhash B; Tan SH
    Biotechnol Adv; 2012; 30(6):1364-80. PubMed ID: 22366515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidation kinetics and effect of pH on the degradation of MTBE with Fenton reagent.
    Burbano AA; Dionysiou DD; Suidan MT; Richardson TL
    Water Res; 2005 Jan; 39(1):107-18. PubMed ID: 15607170
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of activation methods on persulfate oxidation of methyl tert-butyl ether.
    Deng D; Peng L; Guan M; Kang Y
    J Hazard Mater; 2014 Jan; 264():521-8. PubMed ID: 24246442
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Model description and kinetic parameter analysis of MTBE biodegradation in a packed bed reactor.
    Waul C; Arvin E; Schmidt JE
    Water Res; 2008 Jun; 42(12):3122-34. PubMed ID: 18423514
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzymatic biodiesel production kinetics using co-solvent and an anhydrous medium: a strategy to improve lipase performance in a semi-continuous reactor.
    Azócar L; Navia R; Beroiz L; Jeison D; Ciudad G
    N Biotechnol; 2014 Sep; 31(5):422-9. PubMed ID: 24792529
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.