BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 26231158)

  • 1. Selective inhibition of PARP10 using a chemical genetics strategy.
    Morgan RK; Carter-O'Connell I; Cohen MS
    Bioorg Med Chem Lett; 2015 Nov; 25(21):4770-4773. PubMed ID: 26231158
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analogs of TIQ-A as inhibitors of human mono-ADP-ribosylating PARPs.
    Maksimainen MM; Murthy S; Sowa ST; Galera-Prat A; Rolina E; Heiskanen JP; Lehtiö L
    Bioorg Med Chem; 2021 Dec; 52():116511. PubMed ID: 34801828
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design, synthesis and evaluation of potent and selective inhibitors of mono-(ADP-ribosyl)transferases PARP10 and PARP14.
    Holechek J; Lease R; Thorsell AG; Karlberg T; McCadden C; Grant R; Keen A; Callahan E; Schüler H; Ferraris D
    Bioorg Med Chem Lett; 2018 Jun; 28(11):2050-2054. PubMed ID: 29748053
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rational Design of Cell-Active Inhibitors of PARP10.
    Morgan RK; Kirby IT; Vermehren-Schmaedick A; Rodriguez K; Cohen MS
    ACS Med Chem Lett; 2019 Jan; 10(1):74-79. PubMed ID: 30655950
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Substrate-assisted catalysis by PARP10 limits its activity to mono-ADP-ribosylation.
    Kleine H; Poreba E; Lesniewicz K; Hassa PO; Hottiger MO; Litchfield DW; Shilton BH; Lüscher B
    Mol Cell; 2008 Oct; 32(1):57-69. PubMed ID: 18851833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Potent and Selective PARP11 Inhibitor Suggests Coupling between Cellular Localization and Catalytic Activity.
    Kirby IT; Kojic A; Arnold MR; Thorsell AG; Karlberg T; Vermehren-Schmaedick A; Sreenivasan R; Schultz C; Schüler H; Cohen MS
    Cell Chem Biol; 2018 Dec; 25(12):1547-1553.e12. PubMed ID: 30344052
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Kam CM; Tauber AL; Oosthuizen DL; Levonis SM; Schweiker SS
    Future Med Chem; 2020 Dec; 12(23):2105-2122. PubMed ID: 33225737
    [No Abstract]   [Full Text] [Related]  

  • 8. Design and synthesis of potent inhibitors of the mono(ADP-ribosyl)transferase, PARP14.
    Upton K; Meyers M; Thorsell AG; Karlberg T; Holechek J; Lease R; Schey G; Wolf E; Lucente A; Schüler H; Ferraris D
    Bioorg Med Chem Lett; 2017 Jul; 27(13):2907-2911. PubMed ID: 28495083
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical genetic methodologies for identifying protein substrates of PARPs.
    Rodriguez KM; Cohen MS
    Trends Biochem Sci; 2022 May; 47(5):390-402. PubMed ID: 34366182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the way to selective PARP-2 inhibitors. Design, synthesis, and preliminary evaluation of a series of isoquinolinone derivatives.
    Pellicciari R; Camaioni E; Costantino G; Formentini L; Sabbatini P; Venturoni F; Eren G; Bellocchi D; Chiarugi A; Moroni F
    ChemMedChem; 2008 Jun; 3(6):914-23. PubMed ID: 18409175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CDK-dependent activation of poly(ADP-ribose) polymerase member 10 (PARP10).
    Chou HY; Chou HT; Lee SC
    J Biol Chem; 2006 Jun; 281(22):15201-7. PubMed ID: 16455663
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 5-Aminoisoquinolin-1-one (5-AIQ), a Water-Soluble Inhibitor of the Poly(ADP-Ribose)Polymerases (PARPs).
    Threadgill MD
    Curr Med Chem; 2015; 22(33):3807-29. PubMed ID: 26429070
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and Synthesis of Poly(ADP-ribose) Polymerase Inhibitors: Impact of Adenosine Pocket-Binding Motif Appendage to the 3-Oxo-2,3-dihydrobenzofuran-7-carboxamide on Potency and Selectivity.
    Velagapudi UK; Langelier MF; Delgado-Martin C; Diolaiti ME; Bakker S; Ashworth A; Patel BA; Shao X; Pascal JM; Talele TT
    J Med Chem; 2019 Jun; 62(11):5330-5357. PubMed ID: 31042381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In silico investigation of PARP-1 catalytic domains in holo and apo states for the design of high-affinity PARP-1 inhibitors.
    Salmas RE; Unlu A; Yurtsever M; Noskov SY; Durdagi S
    J Enzyme Inhib Med Chem; 2016; 31(1):112-20. PubMed ID: 26083304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PARP10 Multi-Site Auto- and Histone MARylation Visualized by Acid-Urea Gel Electrophoresis.
    García-Saura AG; Schüler H
    Cells; 2021 Mar; 10(3):. PubMed ID: 33804157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure-based design, synthesis, and evaluation of inhibitors with high selectivity for PARP-1 over PARP-2.
    Yu J; Luo L; Hu T; Cui Y; Sun X; Gou W; Hou W; Li Y; Sun T
    Eur J Med Chem; 2022 Jan; 227():113898. PubMed ID: 34656898
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Simple, Sensitive, and Generalizable Plate Assay for Screening PARP Inhibitors.
    Kirby IT; Morgan RK; Cohen MS
    Methods Mol Biol; 2018; 1813():245-252. PubMed ID: 30097873
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combining Chemical Genetics with Proximity-Dependent Labeling Reveals Cellular Targets of Poly(ADP-ribose) Polymerase 14 (PARP14).
    Carter-O'Connell I; Vermehren-Schmaedick A; Jin H; Morgan RK; David LL; Cohen MS
    ACS Chem Biol; 2018 Oct; 13(10):2841-2848. PubMed ID: 30247868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contrasting sirtuin and poly(ADP-ribose)polymerase activities of selected 2,4,6-trisubstituted benzimidazoles.
    Yeong KY; Tan SC; Mai CW; Leong CO; Chung FF; Lee YK; Chee CF; Abdul Rahman N
    Chem Biol Drug Des; 2018 Jan; 91(1):213-219. PubMed ID: 28719017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Small-Molecule Inhibitors of PARPs: From Tools for Investigating ADP-Ribosylation to Therapeutics.
    Kirby IT; Cohen MS
    Curr Top Microbiol Immunol; 2019; 420():211-231. PubMed ID: 30242511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.