These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 26231587)

  • 41. Techniques for Studying Decoding of Single Cell Dynamics.
    Jeknić S; Kudo T; Covert MW
    Front Immunol; 2019; 10():755. PubMed ID: 31031756
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Signal Transduction at the Single-Cell Level: Approaches to Study the Dynamic Nature of Signaling Networks.
    Handly LN; Yao J; Wollman R
    J Mol Biol; 2016 Sep; 428(19):3669-82. PubMed ID: 27430597
    [TBL] [Abstract][Full Text] [Related]  

  • 43. High content imaging for monitoring signalling dynamics in single cells.
    Garner KL
    J Mol Endocrinol; 2020 Nov; 65(4):R91-R100. PubMed ID: 33075744
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Rare Earth Ion Mediated Fluorescence Accumulation on a Single Microbead: An Ultrasensitive Strategy for the Detection of Protein Kinase Activity at the Single-Cell Level.
    Zhang X; Liu C; Wang H; Wang H; Li Z
    Angew Chem Int Ed Engl; 2015 Dec; 54(50):15186-90. PubMed ID: 26482714
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Real-time detection of changes in the electrophoretic mobility of a single cell induced by hyperosmotic stress.
    Mestres P; Petrov D
    Eur Biophys J; 2011 Sep; 40(9):1081-5. PubMed ID: 21710302
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Reliable measurement of
    Cortesi M; Bandiera L; Pasini A; Bevilacqua A; Gherardi A; Furini S; Giordano E
    J Biol Eng; 2017; 11():8. PubMed ID: 28239411
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Reconstruction of Single-Cell Innate Fluorescence Signatures by Confocal Microscopy.
    Hirayama T; Takabe K; Kiyokawa T; Nomura N; Yawata Y
    J Vis Exp; 2020 May; (159):. PubMed ID: 32538911
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Precise mass determination of single cell with cantilever-based microbiosensor system.
    Łabędź B; Wańczyk A; Rajfur Z
    PLoS One; 2017; 12(11):e0188388. PubMed ID: 29161333
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Spatiotemporal Dynamics of Kinase Signaling Visualized by Targeted Reporters.
    Kunkel MT; Newton AC
    Curr Protoc Chem Biol; 2009 Dec; 1(1):17-18. PubMed ID: 21804950
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Quantitative measurement of single cell dynamics.
    Bakstad D; Adamson A; Spiller DG; White MR
    Curr Opin Biotechnol; 2012 Feb; 23(1):103-9. PubMed ID: 22137453
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Single-cell image analysis to explore cell-to-cell heterogeneity in isogenic populations.
    Mattiazzi Usaj M; Yeung CHL; Friesen H; Boone C; Andrews BJ
    Cell Syst; 2021 Jun; 12(6):608-621. PubMed ID: 34139168
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Tools for live-cell imaging of cytoskeletal and nuclear behavior in the unconventional yeast,
    Petrucco CA; Crocker AW; D'Alessandro A; Medina EM; Gorman O; McNeill J; Gladfelter AS; Lew DJ
    Mol Biol Cell; 2024 Apr; 35(4):br10. PubMed ID: 38446617
    [No Abstract]   [Full Text] [Related]  

  • 53. Positive feedback induces switch between distributive and processive phosphorylation of Hog1.
    Mosbacher M; Lee SS; Yaakov G; Nadal-Ribelles M; de Nadal E; van Drogen F; Posas F; Peter M; Claassen M
    Nat Commun; 2023 Apr; 14(1):2477. PubMed ID: 37120434
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Exploratory polarization facilitates mating partner selection in
    Clark-Cotton MR; Henderson NT; Pablo M; Ghose D; Elston TC; Lew DJ
    Mol Biol Cell; 2021 May; 32(10):1048-1063. PubMed ID: 33689470
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Visualizing cellular heterogeneity by quantifying the dynamics of MAPK activity in live mammalian cells with synthetic fluorescent biosensors.
    Ma M; Bordignon P; Dotto GP; Pelet S
    Heliyon; 2020 Dec; 6(12):e05574. PubMed ID: 33319088
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Expanding the Toolkit of Fluorescent Biosensors for Studying Mitogen Activated Protein Kinases in Plants.
    Seitz K; Krysan PJ
    Int J Mol Sci; 2020 Jul; 21(15):. PubMed ID: 32731410
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Ratiometric GPCR signaling enables directional sensing in yeast.
    Henderson NT; Pablo M; Ghose D; Clark-Cotton MR; Zyla TR; Nolen J; Elston TC; Lew DJ
    PLoS Biol; 2019 Oct; 17(10):e3000484. PubMed ID: 31622333
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mechanical stress impairs pheromone signaling via Pkc1-mediated regulation of the MAPK scaffold Ste5.
    van Drogen F; Mishra R; Rudolf F; Walczak MJ; Lee SS; Reiter W; Hegemann B; Pelet S; Dohnal I; Binolfi A; Yudina Z; Selenko P; Wider G; Ammerer G; Peter M
    J Cell Biol; 2019 Sep; 218(9):3117-3133. PubMed ID: 31315942
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Phosphorylation-dependent protein design: design of a minimal protein kinase-inducible domain.
    Gao F; Thornley BS; Tressler CM; Naduthambi D; Zondlo NJ
    Org Biomol Chem; 2019 Apr; 17(16):3984-3995. PubMed ID: 30942803
    [TBL] [Abstract][Full Text] [Related]  

  • 60. MAPK modulation of yeast pheromone signaling output and the role of phosphorylation sites in the scaffold protein Ste5.
    Winters MJ; Pryciak PM
    Mol Biol Cell; 2019 Apr; 30(8):1037-1049. PubMed ID: 30726174
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.