These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
310 related articles for article (PubMed ID: 26231985)
1. Forecasting the accuracy of genomic prediction with different selection targets in the training and prediction set as well as truncation selection. Schopp P; Riedelsheimer C; Utz HF; Schön CC; Melchinger AE Theor Appl Genet; 2015 Nov; 128(11):2189-201. PubMed ID: 26231985 [TBL] [Abstract][Full Text] [Related]
2. Genomic Prediction Within and Across Biparental Families: Means and Variances of Prediction Accuracy and Usefulness of Deterministic Equations. Schopp P; Müller D; Wientjes YCJ; Melchinger AE G3 (Bethesda); 2017 Nov; 7(11):3571-3586. PubMed ID: 28916649 [TBL] [Abstract][Full Text] [Related]
3. Accuracy of Genomic Prediction in Synthetic Populations Depending on the Number of Parents, Relatedness, and Ancestral Linkage Disequilibrium. Schopp P; Müller D; Technow F; Melchinger AE Genetics; 2017 Jan; 205(1):441-454. PubMed ID: 28049710 [TBL] [Abstract][Full Text] [Related]
4. Genomic selection of crossing partners on basis of the expected mean and variance of their derived lines. Osthushenrich T; Frisch M; Herzog E PLoS One; 2017; 12(12):e0188839. PubMed ID: 29200436 [TBL] [Abstract][Full Text] [Related]
5. Genomic prediction across years in a maize doubled haploid breeding program to accelerate early-stage testcross testing. Wang N; Wang H; Zhang A; Liu Y; Yu D; Hao Z; Ilut D; Glaubitz JC; Gao Y; Jones E; Olsen M; Li X; San Vicente F; Prasanna BM; Crossa J; Pérez-Rodríguez P; Zhang X Theor Appl Genet; 2020 Oct; 133(10):2869-2879. PubMed ID: 32607592 [TBL] [Abstract][Full Text] [Related]
6. Accuracy of genomic selection to predict maize single-crosses obtained through different mating designs. Fritsche-Neto R; Akdemir D; Jannink JL Theor Appl Genet; 2018 May; 131(5):1153-1162. PubMed ID: 29445844 [TBL] [Abstract][Full Text] [Related]
7. Optimization of training sets for genomic prediction of early-stage single crosses in maize. Kadam DC; Rodriguez OR; Lorenz AJ Theor Appl Genet; 2021 Feb; 134(2):687-699. PubMed ID: 33398385 [TBL] [Abstract][Full Text] [Related]
8. Genomic models with genotype × environment interaction for predicting hybrid performance: an application in maize hybrids. Acosta-Pech R; Crossa J; de Los Campos G; Teyssèdre S; Claustres B; Pérez-Elizalde S; Pérez-Rodríguez P Theor Appl Genet; 2017 Jul; 130(7):1431-1440. PubMed ID: 28401254 [TBL] [Abstract][Full Text] [Related]
9. Genomic prediction models for traits differing in heritability for soybean, rice, and maize. Kaler AS; Purcell LC; Beissinger T; Gillman JD BMC Plant Biol; 2022 Feb; 22(1):87. PubMed ID: 35219296 [TBL] [Abstract][Full Text] [Related]
10. Genomic prediction in biparental tropical maize populations in water-stressed and well-watered environments using low-density and GBS SNPs. Zhang X; Pérez-Rodríguez P; Semagn K; Beyene Y; Babu R; López-Cruz MA; San Vicente F; Olsen M; Buckler E; Jannink JL; Prasanna BM; Crossa J Heredity (Edinb); 2015 Mar; 114(3):291-9. PubMed ID: 25407079 [TBL] [Abstract][Full Text] [Related]
11. Revisiting hybrid breeding designs using genomic predictions: simulations highlight the superiority of incomplete factorials between segregating families over topcross designs. Seye AI; Bauland C; Charcosset A; Moreau L Theor Appl Genet; 2020 Jun; 133(6):1995-2010. PubMed ID: 32185420 [TBL] [Abstract][Full Text] [Related]
15. Bayesian Genomic Prediction with Genotype × Environment Interaction Kernel Models. Cuevas J; Crossa J; Montesinos-López OA; Burgueño J; Pérez-Rodríguez P; de Los Campos G G3 (Bethesda); 2017 Jan; 7(1):41-53. PubMed ID: 27793970 [TBL] [Abstract][Full Text] [Related]
16. Resource allocation for maximizing prediction accuracy and genetic gain of genomic selection in plant breeding: a simulation experiment. Lorenz AJ G3 (Bethesda); 2013 Mar; 3(3):481-91. PubMed ID: 23450123 [TBL] [Abstract][Full Text] [Related]
17. Enviromic-based kernels may optimize resource allocation with multi-trait multi-environment genomic prediction for tropical Maize. Gevartosky R; Carvalho HF; Costa-Neto G; Montesinos-López OA; Crossa J; Fritsche-Neto R BMC Plant Biol; 2023 Jan; 23(1):10. PubMed ID: 36604618 [TBL] [Abstract][Full Text] [Related]
18. Genomic-Enabled Prediction in Maize Using Kernel Models with Genotype × Environment Interaction. Bandeira E Sousa M; Cuevas J; de Oliveira Couto EG; Pérez-Rodríguez P; Jarquín D; Fritsche-Neto R; Burgueño J; Crossa J G3 (Bethesda); 2017 Jun; 7(6):1995-2014. PubMed ID: 28455415 [TBL] [Abstract][Full Text] [Related]
19. Genomic prediction of hybrid performance: comparison of the efficiency of factorial and tester designs used as training sets in a multiparental connected reciprocal design for maize silage. Lorenzi A; Bauland C; Mary-Huard T; Pin S; Palaffre C; Guillaume C; Lehermeier C; Charcosset A; Moreau L Theor Appl Genet; 2022 Sep; 135(9):3143-3160. PubMed ID: 35918515 [TBL] [Abstract][Full Text] [Related]