These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
465 related articles for article (PubMed ID: 26232091)
1. Contrasting environments shape thermal physiology across the spatial range of the sandhopper Talorchestia capensis. Baldanzi S; Weidberg NF; Fusi M; Cannicci S; McQuaid CD; Porri F Oecologia; 2015 Dec; 179(4):1067-78. PubMed ID: 26232091 [TBL] [Abstract][Full Text] [Related]
2. Environmental domains and range-limiting mechanisms: testing the Abundant Centre Hypothesis using southern African sandhoppers. Baldanzi S; McQuaid CD; Cannicci S; Porri F PLoS One; 2013; 8(1):e54598. PubMed ID: 23372740 [TBL] [Abstract][Full Text] [Related]
3. Microhabitat and body size effects on heat tolerance: implications for responses to climate change (army ants: Formicidae, Ecitoninae). Baudier KM; Mudd AE; Erickson SC; O'Donnell S J Anim Ecol; 2015 Sep; 84(5):1322-30. PubMed ID: 26072696 [TBL] [Abstract][Full Text] [Related]
4. Sensitivity to thermal extremes in Australian Drosophila implies similar impacts of climate change on the distribution of widespread and tropical species. Overgaard J; Kearney MR; Hoffmann AA Glob Chang Biol; 2014 Jun; 20(6):1738-50. PubMed ID: 24549716 [TBL] [Abstract][Full Text] [Related]
5. Incorporating population-level variation in thermal performance into predictions of geographic range shifts. Angert AL; Sheth SN; Paul JR Integr Comp Biol; 2011 Nov; 51(5):733-50. PubMed ID: 21705795 [TBL] [Abstract][Full Text] [Related]
6. Thermal sensitivity of cold climate lizards and the importance of distributional ranges. Bonino MF; Moreno Azócar DL; Schulte JA; Abdala CS; Cruz FB Zoology (Jena); 2015 Aug; 118(4):281-90. PubMed ID: 26066005 [TBL] [Abstract][Full Text] [Related]
7. Conserved and narrow temperature limits in alpine insects: Thermal tolerance and supercooling points of the ice-crawlers, Grylloblatta (Insecta: Grylloblattodea: Grylloblattidae). Schoville SD; Slatyer RA; Bergdahl JC; Valdez GA J Insect Physiol; 2015 Jul; 78():55-61. PubMed ID: 25956197 [TBL] [Abstract][Full Text] [Related]
8. Niche evolution and thermal adaptation in the temperate species Drosophila americana. Sillero N; Reis M; Vieira CP; Vieira J; Morales-Hojas R J Evol Biol; 2014 Aug; 27(8):1549-61. PubMed ID: 24835376 [TBL] [Abstract][Full Text] [Related]
9. Cooler performance breadth in a viviparous skink relative to its oviparous congener. Landry Yuan F; Pickett EJ; Bonebrake TC J Therm Biol; 2016 Oct; 61():106-114. PubMed ID: 27712651 [TBL] [Abstract][Full Text] [Related]
10. Testing the heat-invariant and cold-variability tolerance hypotheses across geographic gradients. Bozinovic F; Orellana MJ; Martel SI; Bogdanovich JM Comp Biochem Physiol A Mol Integr Physiol; 2014 Dec; 178():46-50. PubMed ID: 25152532 [TBL] [Abstract][Full Text] [Related]
11. Geographic variation in acclimation responses of thermal tolerance in South African diving beetles (Dytiscidae: Coleoptera). Hidalgo-Galiana A; Ribera I; Terblanche JS Comp Biochem Physiol A Mol Integr Physiol; 2021 Jul; 257():110955. PubMed ID: 33839295 [TBL] [Abstract][Full Text] [Related]
12. How sensitive are temperate tadpoles to climate change? The use of thermal physiology and niche model tools to assess vulnerability. Perotti MG; Bonino MF; Ferraro D; Cruz FB Zoology (Jena); 2018 Apr; 127():95-105. PubMed ID: 29496379 [TBL] [Abstract][Full Text] [Related]
13. Potential for thermal tolerance to mediate climate change effects on three members of a cool temperate lizard genus, Niveoscincus. Caldwell AJ; While GM; Beeton NJ; Wapstra E J Therm Biol; 2015 Aug; 52():14-23. PubMed ID: 26267494 [TBL] [Abstract][Full Text] [Related]
14. Evolutionary and environmental determinants of freshwater fish thermal tolerance and plasticity. Comte L; Olden JD Glob Chang Biol; 2017 Feb; 23(2):728-736. PubMed ID: 27406402 [TBL] [Abstract][Full Text] [Related]
15. Realised rather than fundamental thermal niches predict site occupancy: Implications for climate change forecasting. Braschler B; Duffy GA; Nortje E; Kritzinger-Klopper S; du Plessis D; Karenyi N; Leihy RI; Chown SL J Anim Ecol; 2020 Dec; 89(12):2863-2875. PubMed ID: 32981063 [TBL] [Abstract][Full Text] [Related]
16. Exploring physiological plasticity and local thermal adaptation in an intertidal crab along a latitudinal cline. Gaitán-Espitia JD; Bacigalupe LD; Opitz T; Lagos NA; Osores S; Lardies MA J Therm Biol; 2017 Aug; 68(Pt A):14-20. PubMed ID: 28689716 [TBL] [Abstract][Full Text] [Related]
17. Using physiology to predict the responses of ants to climatic warming. Diamond SE; Penick CA; Pelini SL; Ellison AM; Gotelli NJ; Sanders NJ; Dunn RR Integr Comp Biol; 2013 Dec; 53(6):965-74. PubMed ID: 23892370 [TBL] [Abstract][Full Text] [Related]
18. Extinction risks forced by climatic change and intraspecific variation in the thermal physiology of a tropical lizard. Pontes-da-Silva E; Magnusson WE; Sinervo B; Caetano GH; Miles DB; Colli GR; Diele-Viegas LM; Fenker J; Santos JC; Werneck FP J Therm Biol; 2018 Apr; 73():50-60. PubMed ID: 29549991 [TBL] [Abstract][Full Text] [Related]
19. Not just range limits: Warming rate and thermal sensitivity shape climate change vulnerability in a species range center. Beaty F; Gehman AM; Brownlee G; Harley CDG Ecology; 2023 Dec; 104(12):e4183. PubMed ID: 37786322 [TBL] [Abstract][Full Text] [Related]
20. Climatic stability, not average habitat temperature, determines thermal tolerance of subterranean beetles. Colado R; Pallarés S; Fresneda J; Mammola S; Rizzo V; Sánchez-Fernández D Ecology; 2022 Apr; 103(4):e3629. PubMed ID: 35018629 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]