BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 26232142)

  • 1. Evaluation of 3D-human skin equivalents for assessment of human dermal absorption of some brominated flame retardants.
    Abdallah MA; Pawar G; Harrad S
    Environ Int; 2015 Nov; 84():64-70. PubMed ID: 26232142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of tetrabromobisphenol A (TBBPA) percutaneous uptake in humans using the parallelogram method.
    Knudsen GA; Hughes MF; McIntosh KL; Sanders JM; Birnbaum LS
    Toxicol Appl Pharmacol; 2015 Dec; 289(2):323-9. PubMed ID: 26387765
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dermal disposition of Tetrabromobisphenol A Bis(2,3-dibromopropyl) ether (TBBPA-BDBPE) using rat and human skin.
    Knudsen GA; Hughes MF; Birnbaum LS
    Toxicol Lett; 2019 Feb; 301():108-113. PubMed ID: 30481582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toxic effects of brominated flame retardants in man and in wildlife.
    Darnerud PO
    Environ Int; 2003 Sep; 29(6):841-53. PubMed ID: 12850100
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dermal bioaccessibility of flame retardants from indoor dust and the influence of topically applied cosmetics.
    Pawar G; Abdallah MA; de Sáa EV; Harrad S
    J Expo Sci Environ Epidemiol; 2017 Jan; 27(1):100-105. PubMed ID: 26732374
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-term exposure of European flounder (Platichthys flesus) to the flame-retardants tetrabromobisphenol A (TBBPA) and hexabromocyclododecane (HBCD).
    Kuiper RV; Cantón RF; Leonards PE; Jenssen BM; Dubbeldam M; Wester PW; van den Berg M; Vos JG; Vethaak AD
    Ecotoxicol Environ Saf; 2007 Jul; 67(3):349-60. PubMed ID: 17258806
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo assessment of dermal adhesion, penetration, and bioavailability of tetrabromobisphenol A.
    Yu Y; Li L; Li H; Yu X; Zhang Y; Wang Q; Zhou Z; Gao D; Ye H; Lin B; Ma R
    Environ Pollut; 2017 Sep; 228():305-310. PubMed ID: 28550799
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Legacy and novel brominated flame retardants in interior car dust - Implications for human exposure.
    Besis A; Christia C; Poma G; Covaci A; Samara C
    Environ Pollut; 2017 Nov; 230():871-881. PubMed ID: 28735244
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brominated flame retardants, hexabromocyclododecane and tetrabromobisphenol A, affect proinflammatory protein expression in human bronchial epithelial cells via disruption of intracellular signaling.
    Koike E; Yanagisawa R; Takano H
    Toxicol In Vitro; 2016 Apr; 32():212-9. PubMed ID: 26718265
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dermal uptake and percutaneous penetration of ten flame retardants in a human skin ex vivo model.
    Frederiksen M; Vorkamp K; Jensen NM; Sørensen JA; Knudsen LE; Sørensen LS; Webster TF; Nielsen JB
    Chemosphere; 2016 Nov; 162():308-14. PubMed ID: 27513551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Absorption and excretion of Tetrabromobisphenol A in male Wistar rats following subchronic dermal exposure.
    Yu Y; Xiang M; Gao D; Ye H; Wang Q; Zhang Y; Li L; Li H
    Chemosphere; 2016 Mar; 146():189-94. PubMed ID: 26716882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Occurrence of tetrabromobisphenol a (TBBPA) and hexabromocyclododecane (HBCD) in soil and road dust in Chongqing, western China, with emphasis on diastereoisomer profiles, particle size distribution, and human exposure.
    Lu JF; He MJ; Yang ZH; Wei SQ
    Environ Pollut; 2018 Nov; 242(Pt A):219-228. PubMed ID: 29980040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing the toxicity of TBBPA and HBCD by zebrafish embryo toxicity assay and biomarker analysis.
    Hu J; Liang Y; Chen M; Wang X
    Environ Toxicol; 2009 Aug; 24(4):334-42. PubMed ID: 18767142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of in vitro vs. in vivo methods for assessment of dermal absorption of organic flame retardants: a review.
    Abdallah MA; Pawar G; Harrad S
    Environ Int; 2015 Jan; 74():13-22. PubMed ID: 25310507
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioaccumulation and translocation of tetrabromobisphenol A and hexabromocyclododecanes in mangrove plants from a national nature reserve of Shenzhen City, South China.
    Li H; Hu Y; Sun Y; De Silva AO; Muir DCG; Wang W; Xie J; Xu X; Pei N; Xiong Y; Luo X; Mai B
    Environ Int; 2019 Aug; 129():239-246. PubMed ID: 31146158
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of neonatal exposure to the flame retardant tetrabromobisphenol-A, aluminum diethylphosphinate or zinc stannate on long-term potentiation and synaptic protein levels in mice.
    Hendriks HS; Koolen LA; Dingemans MM; Viberg H; Lee I; Leonards PE; Ramakers GM; Westerink RH
    Arch Toxicol; 2015 Dec; 89(12):2345-54. PubMed ID: 25253649
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flame retardants, hexabromocyclododecane (HCBD) and tetrabromobisphenol a (TBBPA), alter secretion of tumor necrosis factor alpha (TNFα) from human immune cells.
    Yasmin S; Whalen M
    Arch Toxicol; 2018 Apr; 92(4):1483-1494. PubMed ID: 29356862
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fate of tetrabromobisphenol A and hexabromocyclododecane brominated flame retardants in soil and uptake by plants.
    Li Y; Zhou Q; Wang Y; Xie X
    Chemosphere; 2011 Jan; 82(2):204-9. PubMed ID: 21051070
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The potential of selected brominated flame retardants to affect neurological development.
    Williams AL; DeSesso JM
    J Toxicol Environ Health B Crit Rev; 2010; 13(5):411-48. PubMed ID: 20582854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Health toxicity effects of brominated flame retardants: From environmental to human exposure.
    Feiteiro J; Mariana M; Cairrão E
    Environ Pollut; 2021 Sep; 285():117475. PubMed ID: 34087639
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.