BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 26232187)

  • 1. Comparing probabilistic and descriptive analyses of time-dose-toxicity relationship for determining no-observed-adverse-effect level in drug development.
    Glatard A; Berges A; Sahota T; Ambery C; Osborne J; Smith R; Hénin E; Chen C
    Toxicol Appl Pharmacol; 2015 Oct; 288(2):240-8. PubMed ID: 26232187
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Silico Models for Repeated-Dose Toxicity (RDT): Prediction of the No Observed Adverse Effect Level (NOAEL) and Lowest Observed Adverse Effect Level (LOAEL) for Drugs.
    Pizzo F; Benfenati E
    Methods Mol Biol; 2016; 1425():163-76. PubMed ID: 27311467
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Implementing Toxicity Testing in the 21st Century (TT21C): Making safety decisions using toxicity pathways, and progress in a prototype risk assessment.
    Adeleye Y; Andersen M; Clewell R; Davies M; Dent M; Edwards S; Fowler P; Malcomber S; Nicol B; Scott A; Scott S; Sun B; Westmoreland C; White A; Zhang Q; Carmichael PL
    Toxicology; 2015 Jun; 332():102-11. PubMed ID: 24582757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A statistical evaluation of toxicity study designs for the estimation of the benchmark dose in continuous endpoints.
    Slob W; Moerbeek M; Rauniomaa E; Piersma AH
    Toxicol Sci; 2005 Mar; 84(1):167-85. PubMed ID: 15483190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A benchmark dose analysis for sodium monofluoroacetate (1080) using dichotomous toxicity data.
    Foronda NM; Fowles J; Smith N; Taylor M; Temple W
    Regul Toxicol Pharmacol; 2007 Feb; 47(1):84-9. PubMed ID: 16965845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimating the safe starting dose in phase I clinical trials and no observed effect level based on QSAR modeling of the human maximum recommended daily dose.
    Contrera JF; Matthews EJ; Kruhlak NL; Benz RD
    Regul Toxicol Pharmacol; 2004 Dec; 40(3):185-206. PubMed ID: 15546675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Principles of risk assessment for determining the safety of chemicals: recent assessment of residual solvents in drugs and di(2-ethylhexyl) phthalate.
    Hasegawa R; Koizumi M; Hirose A
    Congenit Anom (Kyoto); 2004 Jun; 44(2):51-9. PubMed ID: 15198717
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study parameters influencing NOAEL and LOAEL in toxicity feeding studies for pesticides: exposure duration versus dose decrement, dose spacing, group size and chemical class.
    Zarn JA; Engeli BE; Schlatter JR
    Regul Toxicol Pharmacol; 2011 Nov; 61(2):243-50. PubMed ID: 21875639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The benchmark dose method--review of available models, and recommendations for application in health risk assessment.
    Filipsson AF; Sand S; Nilsson J; Victorin K
    Crit Rev Toxicol; 2003; 33(5):505-42. PubMed ID: 14594105
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bootstrap estimation of benchmark doses and confidence limits with clustered quantal data.
    Zhu Y; Wang T; Jelsovsky JZ
    Risk Anal; 2007 Apr; 27(2):447-65. PubMed ID: 17511711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Standard and molecular NOAELs for rat testicular toxicity induced by flutamide.
    Rouquié D; Friry-Santini C; Schorsch F; Tinwell H; Bars R
    Toxicol Sci; 2009 May; 109(1):59-65. PubMed ID: 19299419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A molecular and phenotypic integrative approach to identify a no-effect dose level for antiandrogen-induced testicular toxicity.
    Ludwig S; Tinwell H; Schorsch F; Cavaillé C; Pallardy M; Rouquié D; Bars R
    Toxicol Sci; 2011 Jul; 122(1):52-63. PubMed ID: 21525395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deriving a data-based interspecies assessment factor using the NOAEL and the benchmark dose approach.
    Bokkers BG; Slob W
    Crit Rev Toxicol; 2007 Jun; 37(5):355-73. PubMed ID: 17612951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of the dose decrement in regulatory rat pesticide toxicity feeding studies.
    Zarn JA; Engeli BE; Schlatter JR
    Regul Toxicol Pharmacol; 2013 Nov; 67(2):215-20. PubMed ID: 23911766
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Benchmark dose calculation for ordered categorical responses.
    Chen CC; Chen JJ
    Risk Anal; 2014 Aug; 34(8):1435-47. PubMed ID: 24444309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantalization of continuous data for benchmark dose estimation.
    Gaylor DW
    Regul Toxicol Pharmacol; 1996 Dec; 24(3):246-50. PubMed ID: 8975754
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials.
    EFSA GMO Panel Working Group on Animal Feeding Trials
    Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A probabilistic framework for non-cancer risk assessment.
    Chen JJ; Moon H; Kodell RL
    Regul Toxicol Pharmacol; 2007 Jun; 48(1):45-50. PubMed ID: 17166641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acute and subchronic oral toxicity of Coriolus versicolor standardized water extract in Sprague-Dawley rats.
    Hor SY; Ahmad M; Farsi E; Lim CP; Asmawi MZ; Yam MF
    J Ethnopharmacol; 2011 Oct; 137(3):1067-76. PubMed ID: 21767625
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The use of myocardial and testicular end points as a basis for estimating a proposed tolerable daily intake for sodium monofluoroacetate (1080).
    Foronda NM; Fowles J; Smith N; Taylor M; Temple W; Darlington C
    Regul Toxicol Pharmacol; 2007 Feb; 47(1):29-36. PubMed ID: 17030370
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.