These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 26232193)

  • 1. Dual filtering in operational and joint spaces for reaching and grasping.
    Lopez L; Quinton JC; Mezouar Y
    Cogn Process; 2015 Sep; 16 Suppl 1():293-7. PubMed ID: 26232193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Whole arm manipulation planning based on feedback velocity fields and sampling-based techniques.
    Talaei B; Abdollahi F; Talebi HA; Omidi Karkani E
    ISA Trans; 2013 Sep; 52(5):684-91. PubMed ID: 23701897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reliable Vision-Based Grasping Target Recognition for Upper Limb Prostheses.
    Zhong B; Huang H; Lobaton E
    IEEE Trans Cybern; 2022 Mar; 52(3):1750-1762. PubMed ID: 32520717
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human-Like Behavior Generation Based on Head-Arms Model for Robot Tracking External Targets and Body Parts.
    Zhang Z; Beck A; Magnenat-Thalmann N
    IEEE Trans Cybern; 2015 Aug; 45(8):1390-400. PubMed ID: 25252290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reaching to grasp with a multi-jointed arm. I. Computational model.
    Torres EB; Zipser D
    J Neurophysiol; 2002 Nov; 88(5):2355-67. PubMed ID: 12424277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A cortically-inspired model for inverse kinematics computation of a humanoid finger with mechanically coupled joints.
    Gentili RJ; Oh H; Kregling AV; Reggia JA
    Bioinspir Biomim; 2016 May; 11(3):036013. PubMed ID: 27194213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-time inverse kinematics techniques for anthropomorphic limbs.
    Tolani D; Goswami A; Badler NI
    Graph Models; 2000 Sep; 62(5):353-88. PubMed ID: 12143897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cortex inspired model for inverse kinematics computation for a humanoid robotic finger.
    Gentili RJ; Oh H; Molina J; Reggia JA; Contreras-Vidal JL
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():3052-5. PubMed ID: 23366569
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Musculoskeletal representation of a large repertoire of hand grasping actions in primates.
    Schaffelhofer S; Sartori M; Scherberger H; Farina D
    IEEE Trans Neural Syst Rehabil Eng; 2015 Mar; 23(2):210-20. PubMed ID: 25350935
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-time inverse kinematics of the human arm.
    Tolani D; Badler NI
    Presence (Camb); 1996; 5(4):393-401. PubMed ID: 11539377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Closed-form inverse kinematics for interventional C-arm X-ray imaging with six degrees of freedom: modeling and application.
    Wang L; Fallavollita P; Zou R; Chen X; Weidert S; Navab N
    IEEE Trans Med Imaging; 2012 May; 31(5):1086-99. PubMed ID: 22293978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A methodology to quantify alterations in human upper limb movement during co-manipulation with an exoskeleton.
    Jarrassé N; Tagliabue M; Robertson JV; Maiza A; Crocher V; Roby-Brami A; Morel G
    IEEE Trans Neural Syst Rehabil Eng; 2010 Aug; 18(4):389-97. PubMed ID: 20643611
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Symbolic dynamic filtering and language measure for behavior identification of mobile robots.
    Mallapragada G; Ray A; Jin X
    IEEE Trans Syst Man Cybern B Cybern; 2012 Jun; 42(3):647-59. PubMed ID: 22067436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The JamHand: Dexterous Manipulation with Minimal Actuation.
    Amend J; Lipson H
    Soft Robot; 2017 Mar; 4(1):70-80. PubMed ID: 29182098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An octopus-bioinspired solution to movement and manipulation for soft robots.
    Calisti M; Giorelli M; Levy G; Mazzolai B; Hochner B; Laschi C; Dario P
    Bioinspir Biomim; 2011 Sep; 6(3):036002. PubMed ID: 21670493
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Asynchronous decoding of finger position and of EMG during precision grip using CM cell activity: application to robot control.
    Ouanezar S; Eskiizmirliler S; Maier MA
    J Integr Neurosci; 2011 Dec; 10(4):489-511. PubMed ID: 22262537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Age-related differences in the reaching and grasping coordination in children: unimanual and bimanual tasks.
    Olivier I; Hay L; Bard C; Fleury M
    Exp Brain Res; 2007 May; 179(1):17-27. PubMed ID: 17091289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Omnidirectional Continuous Movement Method of Dual-Arm Robot in a Space Station.
    Zhang Z; Wang Z; Zhou Z; Li H; Zhang Q; Zhou Y; Li X; Liu W
    Sensors (Basel); 2023 May; 23(11):. PubMed ID: 37299752
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Linear and nonlinear subspace analysis of hand movements during grasping.
    Cui PH; Visell Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2529-32. PubMed ID: 25570505
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quality of Grasping and the Role of Haptics in a 3-D Immersive Virtual Reality Environment in Individuals With Stroke.
    Levin MF; Magdalon EC; Michaelsen SM; Quevedo AA
    IEEE Trans Neural Syst Rehabil Eng; 2015 Nov; 23(6):1047-55. PubMed ID: 25594971
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.