BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 26232408)

  • 21. Genetic interactions between polymorphisms that affect gene expression in yeast.
    Brem RB; Storey JD; Whittle J; Kruglyak L
    Nature; 2005 Aug; 436(7051):701-3. PubMed ID: 16079846
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The complex genetic and molecular basis of a model quantitative trait.
    Linder RA; Seidl F; Ha K; Ehrenreich IM
    Mol Biol Cell; 2016 Jan; 27(1):209-18. PubMed ID: 26510497
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sequential quantitative trait locus mapping in experimental crosses.
    Satagopan JM; Sen S; Churchill GA
    Stat Appl Genet Mol Biol; 2007; 6():Article12. PubMed ID: 17474878
    [TBL] [Abstract][Full Text] [Related]  

  • 24. ATG18 and FAB1 are involved in dehydration stress tolerance in Saccharomyces cerevisiae.
    López-Martínez G; Margalef-Català M; Salinas F; Liti G; Cordero-Otero R
    PLoS One; 2015; 10(3):e0119606. PubMed ID: 25803831
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genetic dissection of complex traits in yeast: insights from studies of gene expression and other phenotypes in the BYxRM cross.
    Ehrenreich IM; Gerke JP; Kruglyak L
    Cold Spring Harb Symp Quant Biol; 2009; 74():145-53. PubMed ID: 19734204
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dissecting the architecture of a quantitative trait locus in yeast.
    Steinmetz LM; Sinha H; Richards DR; Spiegelman JI; Oefner PJ; McCusker JH; Davis RW
    Nature; 2002 Mar; 416(6878):326-30. PubMed ID: 11907579
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An evaluation of high-throughput approaches to QTL mapping in Saccharomyces cerevisiae.
    Wilkening S; Lin G; Fritsch ES; Tekkedil MM; Anders S; Kuehn R; Nguyen M; Aiyar RS; Proctor M; Sakhanenko NA; Galas DJ; Gagneur J; Deutschbauer A; Steinmetz LM
    Genetics; 2014 Mar; 196(3):853-65. PubMed ID: 24374355
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genetic mapping of MAPK-mediated complex traits Across S. cerevisiae.
    Treusch S; Albert FW; Bloom JS; Kotenko IE; Kruglyak L
    PLoS Genet; 2015 Jan; 11(1):e1004913. PubMed ID: 25569670
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification of a complex genetic network underlying Saccharomyces cerevisiae colony morphology.
    Voordeckers K; De Maeyer D; van der Zande E; Vinces MD; Meert W; Cloots L; Ryan O; Marchal K; Verstrepen KJ
    Mol Microbiol; 2012 Oct; 86(1):225-39. PubMed ID: 22882838
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inferring Gene Regulatory Networks from a Population of Yeast Segregants.
    Chen C; Zhang D; Hazbun TR; Zhang M
    Sci Rep; 2019 Feb; 9(1):1197. PubMed ID: 30718595
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genetic Analysis of Complex Traits in
    Ehrenreich IM; Magwene PM
    Cold Spring Harb Protoc; 2017 Jun; 2017(6):pdb.top077602. PubMed ID: 28572210
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular Origins of Complex Heritability in Natural Genotype-to-Phenotype Relationships.
    Jakobson CM; Jarosz DF
    Cell Syst; 2019 May; 8(5):363-379.e3. PubMed ID: 31054809
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Revealing complex traits with small molecules and naturally recombinant yeast strains.
    Perlstein EO; Ruderfer DM; Ramachandran G; Haggarty SJ; Kruglyak L; Schreiber SL
    Chem Biol; 2006 Mar; 13(3):319-27. PubMed ID: 16638537
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Novel wine-mediated FLO11 flocculation phenotype of commercial Saccharomyces cerevisiae wine yeast strains with modified FLO gene expression.
    Govender P; Kroppenstedt S; Bauer FF
    FEMS Microbiol Lett; 2011 Apr; 317(2):117-26. PubMed ID: 21251052
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Finding genes that underlie complex traits.
    Glazier AM; Nadeau JH; Aitman TJ
    Science; 2002 Dec; 298(5602):2345-9. PubMed ID: 12493905
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mss11p is a central element of the regulatory network that controls FLO11 expression and invasive growth in Saccharomyces cerevisiae.
    van Dyk D; Pretorius IS; Bauer FF
    Genetics; 2005 Jan; 169(1):91-106. PubMed ID: 15466424
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gene-Environment Interactions in Stress Response Contribute Additively to a Genotype-Environment Interaction.
    Matsui T; Ehrenreich IM
    PLoS Genet; 2016 Jul; 12(7):e1006158. PubMed ID: 27437938
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genotype-environment interactions reveal causal pathways that mediate genetic effects on phenotype.
    Gagneur J; Stegle O; Zhu C; Jakob P; Tekkedil MM; Aiyar RS; Schuon AK; Pe'er D; Steinmetz LM
    PLoS Genet; 2013; 9(9):e1003803. PubMed ID: 24068968
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Genomic Architecture of Interactions Between Natural Genetic Polymorphisms and Environments in Yeast Growth.
    Wei X; Zhang J
    Genetics; 2017 Feb; 205(2):925-937. PubMed ID: 27903611
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Gene-environment interaction in yeast gene expression.
    Smith EN; Kruglyak L
    PLoS Biol; 2008 Apr; 6(4):e83. PubMed ID: 18416601
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.