These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 26232569)

  • 81. Tailored zeolites for the removal of metal oxyanions: overcoming intrinsic limitations of zeolites.
    Figueiredo H; Quintelas C
    J Hazard Mater; 2014 Jun; 274():287-99. PubMed ID: 24794984
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Photocatalytic oxidation of NOx over TiO2/HZSM-5 catalysts in the presence of water vapor: Effect of hydrophobicity of zeolites.
    Guo G; Hu Y; Jiang S; Wei C
    J Hazard Mater; 2012 Jul; 223-224():39-45. PubMed ID: 22579762
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Influences of humic acid, bicarbonate and calcium on Cr(VI) reductive removal by zero-valent iron.
    Liu T; Rao P; Lo IM
    Sci Total Environ; 2009 May; 407(10):3407-14. PubMed ID: 19232679
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Benzene carboxylic acid derivatized graphene oxide nanosheets on natural zeolites as effective adsorbents for cationic dye removal.
    Yu Y; Murthy BN; Shapter JG; Constantopoulos KT; Voelcker NH; Ellis AV
    J Hazard Mater; 2013 Sep; 260():330-8. PubMed ID: 23778259
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Uranium sorption on bentonite modified by octadecyltrimethylammonium bromide.
    Majdan M; Pikus S; Gajowiak A; Sternik D; Zięba E
    J Hazard Mater; 2010 Dec; 184(1-3):662-670. PubMed ID: 20863617
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Removing Cr(VI) from aqueous solutions using a functional ionic liquid-based cross-linked polymer.
    Gao H; Wang Y; Zheng L
    J Environ Manage; 2014 May; 137():81-5. PubMed ID: 24603030
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Magnetic vinylphenyl boronic acid microparticles for Cr(VI) adsorption: kinetic, isotherm and thermodynamic studies.
    Kara A; Demirbel E; Tekin N; Osman B; Beşirli N
    J Hazard Mater; 2015 Apr; 286():612-23. PubMed ID: 25666882
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Coexistence or aggression? Insight into the influence of phosphate on Cr(VI) adsorption onto aluminum-substituted ferrihydrite.
    Zhu L; Fu F; Tang B
    Chemosphere; 2018 Dec; 212():408-417. PubMed ID: 30149314
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Synthesis of graphene/SiO
    Fang W; Jiang X; Luo H; Geng J
    Chemosphere; 2018 Apr; 197():594-602. PubMed ID: 29407822
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Effect of pH, temperature and co-existing anions on the Removal of Cr(VI) in groundwater by green synthesized nZVI/Ni.
    Zhu F; He S; Liu T
    Ecotoxicol Environ Saf; 2018 Nov; 163():544-550. PubMed ID: 30077151
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Zeolite fillers for resin-based composites with remineralizing potential.
    Okulus Z; Sandomierski M; Zielińska M; Buchwald T; Voelkel A
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Mar; 210():126-135. PubMed ID: 30453188
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Modulation of cytotoxicity by consecutive adsorption of tannic acid and pesticides on surfactant functionalized zeolites.
    Jevremović A; BoŽinović N; Arsenijević D; Marmakov S; Nedić Vasiljević B; Uskoković-Marković S; Bajuk-Bogdanović D; Milojević-Rakić M
    Environ Sci Process Impacts; 2020 Nov; 22(11):2199-2211. PubMed ID: 32975257
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Cross flow ultrafiltration of Cr (VI) using MCM-41, MCM-48 and Faujasite (FAU) zeolite-ceramic composite membranes.
    Basumatary AK; Kumar RV; Ghoshal AK; Pugazhenthi G
    Chemosphere; 2016 Jun; 153():436-46. PubMed ID: 27031807
    [TBL] [Abstract][Full Text] [Related]  

  • 94. The use of in situ powder X-ray diffraction in the investigation of dolomite as a potential reversible high-temperature CO2 sorbent.
    Readman JE; Blom R
    Phys Chem Chem Phys; 2005 Mar; 7(6):1214-9. PubMed ID: 19791335
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Sorption of arsenic from soil-washing leachate by surfactant-modified zeolite.
    Sullivan EJ; Bowman RS; Legiec IA
    J Environ Qual; 2003; 32(6):2387-91. PubMed ID: 14674564
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Precipitates on granular iron in solutions containing calcium carbonate with trichloroethene and hexavalent chromium.
    Jeen SW; Jambor JL; Blowes DW; Gillham RW
    Environ Sci Technol; 2007 Mar; 41(6):1989-94. PubMed ID: 17410795
    [TBL] [Abstract][Full Text] [Related]  

  • 97. A novel citrate selective electrode based on surfactant modified nano-clinoptilolite.
    Hasheminejad M; Nezamzadeh-Ejhieh A
    Food Chem; 2015 Apr; 172():794-801. PubMed ID: 25442622
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Regeneration of surfactant-modified zeolite after saturation with chromate and perchloroethylene.
    Li Z; Bowman RS
    Water Res; 2001 Jan; 35(1):322-6. PubMed ID: 11257888
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Modified Jordanian zeolitic tuff in hydrocarbon removal from surface water.
    Al-Jammal N; Juzsakova T; Zsirka B; Sebestyén V; Németh J; Cretescu I; Halmágyi T; Domokos E; Rédey Á
    J Environ Manage; 2019 Jun; 239():333-341. PubMed ID: 30921752
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Modification of natural zeolite clinoptilolite and ITS application in the adsorption of herbicides.
    Straioto H; Viotti PV; Moura AA; Diório A; Scaliante MHNO; Moreira WM; Vieira MF; Bergamasco R
    Environ Technol; 2023 Nov; 44(26):3949-3964. PubMed ID: 35546108
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.