These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
884 related articles for article (PubMed ID: 26232670)
1. Biocomposite scaffolds for bone regeneration: Role of chitosan and hydroxyapatite within poly-3-hydroxybutyrate-co-3-hydroxyvalerate on mechanical properties and in vitro evaluation. Zhang S; Prabhakaran MP; Qin X; Ramakrishna S J Mech Behav Biomed Mater; 2015 Nov; 51():88-98. PubMed ID: 26232670 [TBL] [Abstract][Full Text] [Related]
2. Poly-3-hydroxybutyrate-co-3-hydroxyvalerate containing scaffolds and their integration with osteoblasts as a model for bone tissue engineering. Zhang S; Prabhakaran MP; Qin X; Ramakrishna S J Biomater Appl; 2015 May; 29(10):1394-406. PubMed ID: 25592285 [TBL] [Abstract][Full Text] [Related]
3. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)-based nanofibrous scaffolds to support functional esophageal epithelial cells towards engineering the esophagus. Kuppan P; Sethuraman S; Krishnan UM J Biomater Sci Polym Ed; 2014; 25(6):574-93. PubMed ID: 24502395 [TBL] [Abstract][Full Text] [Related]
4. PHBV/PLLA-based composite scaffolds fabricated using an emulsion freezing/freeze-drying technique for bone tissue engineering: surface modification and in vitro biological evaluation. Sultana N; Wang M Biofabrication; 2012 Mar; 4(1):015003. PubMed ID: 22258057 [TBL] [Abstract][Full Text] [Related]
5. Nanofibrous poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/chitosan scaffolds for skin regeneration. Veleirinho B; Coelho DS; Dias PF; Maraschin M; Ribeiro-do-Valle RM; Lopes-da-Silva JA Int J Biol Macromol; 2012 Nov; 51(4):343-50. PubMed ID: 22652216 [TBL] [Abstract][Full Text] [Related]
6. Electrospinning and evaluation of PHBV-based tissue engineering scaffolds with different fibre diameters, surface topography and compositions. Tong HW; Wang M; Lu WW J Biomater Sci Polym Ed; 2012; 23(6):779-806. PubMed ID: 21418747 [TBL] [Abstract][Full Text] [Related]
7. A comparison study between electrospun polycaprolactone and piezoelectric poly(3-hydroxybutyrate-co-3-hydroxyvalerate) scaffolds for bone tissue engineering. Gorodzha SN; Muslimov AR; Syromotina DS; Timin AS; Tcvetkov NY; Lepik KV; Petrova AV; Surmeneva MA; Gorin DA; Sukhorukov GB; Surmenev RA Colloids Surf B Biointerfaces; 2017 Dec; 160():48-59. PubMed ID: 28917149 [TBL] [Abstract][Full Text] [Related]
8. Nanobioengineered electrospun composite nanofibers and osteoblasts for bone regeneration. Venugopal JR; Low S; Choon AT; Kumar AB; Ramakrishna S Artif Organs; 2008 May; 32(5):388-97. PubMed ID: 18471168 [TBL] [Abstract][Full Text] [Related]
9. Nanostructured biocomposite substrates by electrospinning and electrospraying for the mineralization of osteoblasts. Gupta D; Venugopal J; Mitra S; Giri Dev VR; Ramakrishna S Biomaterials; 2009 Apr; 30(11):2085-94. PubMed ID: 19167752 [TBL] [Abstract][Full Text] [Related]
11. Effects of hydroxyapatite-containing composite nanofibers on osteogenesis of mesenchymal stem cells in vitro and bone regeneration in vivo. Lü LX; Zhang XF; Wang YY; Ortiz L; Mao X; Jiang ZL; Xiao ZD; Huang NP ACS Appl Mater Interfaces; 2013 Jan; 5(2):319-30. PubMed ID: 23267692 [TBL] [Abstract][Full Text] [Related]
12. Poly (3-hydroxybutyrate-co-3-hydroxyvalerate)/fibrinogen/bredigite nanofibrous membranes and their integration with osteoblasts for guided bone regeneration. Kouhi M; Jayarama Reddy V; Fathi M; Shamanian M; Valipouri A; Ramakrishna S J Biomed Mater Res A; 2019 Jun; 107(6):1154-1165. PubMed ID: 30636094 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of adenoviral vascular endothelial growth factor-activated chitosan/hydroxyapatite scaffold for engineering vascularized bone tissue using human osteoblasts: In vitro and in vivo studies. Koç A; Finkenzeller G; Elçin AE; Stark GB; Elçin YM J Biomater Appl; 2014 Nov; 29(5):748-60. PubMed ID: 25062670 [TBL] [Abstract][Full Text] [Related]
14. Osteoblast mineralization with composite nanofibrous substrate for bone tissue regeneration. Venugopal JR; Giri Dev VR; Senthilram T; Sathiskumar D; Gupta D; Ramakrishna S Cell Biol Int; 2011 Jan; 35(1):73-80. PubMed ID: 20923413 [TBL] [Abstract][Full Text] [Related]
15. The promotion of bone regeneration by nanofibrous hydroxyapatite/chitosan scaffolds by effects on integrin-BMP/Smad signaling pathway in BMSCs. Liu H; Peng H; Wu Y; Zhang C; Cai Y; Xu G; Li Q; Chen X; Ji J; Zhang Y; OuYang HW Biomaterials; 2013 Jun; 34(18):4404-17. PubMed ID: 23515177 [TBL] [Abstract][Full Text] [Related]
17. Electrospun nanostructured scaffolds for bone tissue engineering. Prabhakaran MP; Venugopal J; Ramakrishna S Acta Biomater; 2009 Oct; 5(8):2884-93. PubMed ID: 19447211 [TBL] [Abstract][Full Text] [Related]
18. Aloe Vera-Derived Gel-Blended PHBV Nanofibrous Scaffold for Bone Tissue Engineering. Tahmasebi A; Shapouri Moghadam A; Enderami SE; Islami M; Kaabi M; Saburi E; Daei Farshchi A; Soleimanifar F; Mansouri V ASAIO J; 2020 Aug; 66(8):966-973. PubMed ID: 32740360 [TBL] [Abstract][Full Text] [Related]
19. Electrospun composites of PHBV, silk fibroin and nano-hydroxyapatite for bone tissue engineering. Paşcu EI; Stokes J; McGuinness GB Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4905-16. PubMed ID: 24094204 [TBL] [Abstract][Full Text] [Related]
20. Design and fabrication of bone tissue scaffolds based on PCL/PHBV containing hydroxyapatite nanoparticles: dual-leaching technique. Nahanmoghadam A; Asemani M; Goodarzi V; Ebrahimi-Barough S J Biomed Mater Res A; 2021 Jun; 109(6):981-993. PubMed ID: 33448637 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]