BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 26232814)

  • 21. Discrete quasi-linear viscoelastic damping analysis of connective tissues, and the biomechanics of stretching.
    Babaei B; Velasquez-Mao AJ; Thomopoulos S; Elson EL; Abramowitch SD; Genin GM
    J Mech Behav Biomed Mater; 2017 May; 69():193-202. PubMed ID: 28088071
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ligament creep cannot be predicted from stress relaxation at low stress: a biomechanical study of the rabbit medial collateral ligament.
    Thornton GM; Oliynyk A; Frank CB; Shrive NG
    J Orthop Res; 1997 Sep; 15(5):652-6. PubMed ID: 9420592
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural Model for Viscoelastic Properties of Pericardial Bioprosthetic Valves.
    Rassoli A; Fatouraee N; Guidoin R
    Artif Organs; 2018 Jun; 42(6):630-639. PubMed ID: 29602267
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Finite element implementation of anisotropic quasi-linear viscoelasticity using a discrete spectrum approximation.
    Puso MA; Weiss JA
    J Biomech Eng; 1998 Feb; 120(1):62-70. PubMed ID: 9675682
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A viscoelastic constitutive model for human femoropopliteal arteries.
    Zhang W; Jadidi M; Razian SA; Holzapfel GA; Kamenskiy A; Nordsletten DA
    Acta Biomater; 2023 Oct; 170():68-85. PubMed ID: 37699504
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A mathematical model for creep, relaxation and strain stiffening in parallel-fibered collagenous tissues.
    Sopakayang R; De Vita R
    Med Eng Phys; 2011 Nov; 33(9):1056-63. PubMed ID: 21622018
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Required test duration for group comparisons in ligament viscoelasticity: a statistical approach.
    Manley E; Provenzano PP; Heisey D; Lakes R; Vanderby R
    Biorheology; 2003; 40(4):441-50. PubMed ID: 12775910
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Anisotropic time-dependant behaviour of the aortic valve.
    Anssari-Benam A; Bader DL; Screen HR
    J Mech Behav Biomed Mater; 2011 Nov; 4(8):1603-10. PubMed ID: 22098862
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Constitutive Equations for Analyzing Stress Relaxation and Creep of Viscoelastic Materials Based on Standard Linear Solid Model Derived with Finite Loading Rate.
    Lin CY; Chen YC; Lin CH; Chang KV
    Polymers (Basel); 2022 May; 14(10):. PubMed ID: 35632006
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparing finite viscoelastic constitutive relations and variational principles in modeling gastrointestinal soft tissue deformation.
    Sharma S; Buist ML
    J Mech Behav Biomed Mater; 2024 Jul; 155():106560. PubMed ID: 38744120
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nonlinear ligament viscoelasticity.
    Provenzano P; Lakes R; Keenan T; Vanderby R
    Ann Biomed Eng; 2001 Oct; 29(10):908-14. PubMed ID: 11764321
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stress relaxation and recovery in tendon and ligament: experiment and modeling.
    Duenwald SE; Vanderby R; Lakes RS
    Biorheology; 2010; 47(1):1-14. PubMed ID: 20448294
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Biphasic Transversely Isotropic Poroviscoelastic Model for the Unconfined Compression of Hydrated Soft Tissue.
    Hatami-Marbini H; Maulik R
    J Biomech Eng; 2016 Mar; 138(3):4032059. PubMed ID: 26593630
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A three-dimensional visco-hyperelastic FE model for simulating the mechanical dynamic response of preloaded phalanges.
    Noël C
    Med Eng Phys; 2018 Nov; 61():41-50. PubMed ID: 30262138
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Bayesian approach for characterization of soft tissue viscoelasticity in acoustic radiation force imaging.
    Zhao X; Pelegri AA
    Int J Numer Method Biomed Eng; 2016 Apr; 32(4):e02741. PubMed ID: 26255624
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Estimation of the viscous properties of skin and subcutaneous tissue in uniaxial stress relaxation tests.
    Wu JZ; Cutlip RG; Welcome D; Dong RG
    Biomed Mater Eng; 2006; 16(1):53-66. PubMed ID: 16410644
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A rheological network model for the continuum anisotropic and viscoelastic behavior of soft tissue.
    Bischoff JE; Arruda EM; Grosh K
    Biomech Model Mechanobiol; 2004 Sep; 3(1):56-65. PubMed ID: 15278837
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Collagen orientation and molecular spacing during creep and stress-relaxation in soft connective tissues.
    Purslow PP; Wess TJ; Hukins DW
    J Exp Biol; 1998 Jan; 201(Pt 1):135-42. PubMed ID: 9390944
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Logarithmic rate based elasto-viscoplastic cyclic constitutive model for soft biological tissues.
    Zhu Y; Kang G; Yu C; Poh LH
    J Mech Behav Biomed Mater; 2016 Aug; 61():397-409. PubMed ID: 27108349
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Unconfined compression of hydrated viscoelastic tissues: a biphasic poroviscoelastic analysis.
    Mak AF
    Biorheology; 1986; 23(4):371-83. PubMed ID: 3779062
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.