BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 26232932)

  • 1. A guiding light: spectroscopy on digital microfluidic devices using in-plane optical fibre waveguides.
    Choi K; Mudrik JM; Wheeler AR
    Anal Bioanal Chem; 2015 Sep; 407(24):7467-75. PubMed ID: 26232932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A digital microfluidic method for multiplexed cell-based apoptosis assays.
    Bogojevic D; Chamberlain MD; Barbulovic-Nad I; Wheeler AR
    Lab Chip; 2012 Feb; 12(3):627-34. PubMed ID: 22159547
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multilayer hybrid microfluidics: a digital-to-channel interface for sample processing and separations.
    Watson MW; Jebrail MJ; Wheeler AR
    Anal Chem; 2010 Aug; 82(15):6680-6. PubMed ID: 20670000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance of an in-plane detection cell with integrated waveguides for UV/Vis absorbance measurements on microfluidic separation devices.
    Petersen NJ; Mogensen KB; Kutter JP
    Electrophoresis; 2002 Oct; 23(20):3528-36. PubMed ID: 12412121
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A droplet-to-digital (D2D) microfluidic device for single cell assays.
    Shih SC; Gach PC; Sustarich J; Simmons BA; Adams PD; Singh S; Singh AK
    Lab Chip; 2015 Jan; 15(1):225-36. PubMed ID: 25354549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A digital microfluidic approach to heterogeneous immunoassays.
    Miller EM; Ng AH; Uddayasankar U; Wheeler AR
    Anal Bioanal Chem; 2011 Jan; 399(1):337-45. PubMed ID: 21057776
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-regulated, droplet-based sample chopper for microfluidic absorbance detection.
    Deal KS; Easley CJ
    Anal Chem; 2012 Feb; 84(3):1510-6. PubMed ID: 22191400
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Digital Microfluidic Cell Culture.
    Ng AH; Li BB; Chamberlain MD; Wheeler AR
    Annu Rev Biomed Eng; 2015; 17():91-112. PubMed ID: 26643019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impedance spectroscopy and optical analysis of single biological cells and organisms in microsystems.
    Gawad S; Holmes D; Benazzi G; Renaud P; Morgan H
    Methods Mol Biol; 2010; 583():149-82. PubMed ID: 19763464
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamically reconfigurable fibre optical spanner.
    Kolb T; Albert S; Haug M; Whyte G
    Lab Chip; 2014 Mar; 14(6):1186-90. PubMed ID: 24493284
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On-chip switching of a silicon nitride micro-ring resonator based on digital microfluidics platform.
    Zuta Y; Goykhman I; Desiatov B; Levy U
    Opt Express; 2010 Nov; 18(24):24762-9. PubMed ID: 21164824
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On-chip digital microfluidic architectures for enhanced actuation and sensing.
    Nichols J; Collier CM; Landry EL; Wiltshire M; Born B; Holzman JF
    J Biomed Opt; 2012 Jun; 17(6):067005. PubMed ID: 22734783
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polymer waveguide backplanes for optical sensor interfaces in microfluidics.
    Lee KS; Lee HL; Ram RJ
    Lab Chip; 2007 Nov; 7(11):1539-45. PubMed ID: 17960283
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical sensing systems for microfluidic devices: a review.
    Kuswandi B; Nuriman ; Huskens J; Verboom W
    Anal Chim Acta; 2007 Oct; 601(2):141-55. PubMed ID: 17920386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Droplet-on-a-wristband: chip-to-chip digital microfluidic interfaces between replaceable and flexible electrowetting modules.
    Fan SK; Yang H; Hsu W
    Lab Chip; 2011 Jan; 11(2):343-7. PubMed ID: 20957291
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced absorbance detection system for online bacterial monitoring in digital microfluidics.
    Wu J; Zhang M; Huang J; Guan J; Hu C; Shi M; Hu S; Wang S; Ma H
    Analyst; 2023 Sep; 148(19):4659-4667. PubMed ID: 37615041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids.
    Srinivasan V; Pamula VK; Fair RB
    Lab Chip; 2004 Aug; 4(4):310-5. PubMed ID: 15269796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A digital microfluidic method for in situ formation of porous polymer monoliths with application to solid-phase extraction.
    Yang H; Mudrik JM; Jebrail MJ; Wheeler AR
    Anal Chem; 2011 May; 83(10):3824-30. PubMed ID: 21524096
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfabricated polymer analysis chip for optical detection.
    Fleger M; Siepe D; Neyer A
    IEE Proc Nanobiotechnol; 2004 Aug; 151(4):159-61. PubMed ID: 16475861
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distillation and detection of SO2 using a microfluidic chip.
    Ju WJ; Fu LM; Yang RJ; Lee CL
    Lab Chip; 2012 Feb; 12(3):622-6. PubMed ID: 22159042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.