These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 26232932)

  • 41. Integrated digital microfluidic platform for voltammetric analysis.
    Dryden MD; Rackus DD; Shamsi MH; Wheeler AR
    Anal Chem; 2013 Sep; 85(18):8809-16. PubMed ID: 24001207
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A microfluidic refractometric sensor based on gratings in optical fibre microwires.
    Xu F; Brambilla G; Lu Y
    Opt Express; 2009 Nov; 17(23):20866-71. PubMed ID: 19997322
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Fabrication and laser patterning of polystyrene optical oxygen sensor films for lab-on-a-chip applications.
    Grist SM; Oyunerdene N; Flueckiger J; Kim J; Wong PC; Chrostowski L; Cheung KC
    Analyst; 2014 Nov; 139(22):5718-27. PubMed ID: 25230092
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A SU-8/PDMS hybrid microfluidic device with integrated optical fibers for online monitoring of lactate.
    Wu MH; Cai H; Xu X; Urban JP; Cui ZF; Cui Z
    Biomed Microdevices; 2005 Dec; 7(4):323-9. PubMed ID: 16404510
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Determination of blood lithium-ion concentration using digital microfluidic whole-blood separation and preloaded paper sensors.
    Komatsu T; Tokeshi M; Fan SK
    Biosens Bioelectron; 2022 Jan; 195():113631. PubMed ID: 34571482
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Interfacing digital microfluidics with high-field nuclear magnetic resonance spectroscopy.
    Swyer I; Soong R; Dryden MD; Fey M; Maas WE; Simpson A; Wheeler AR
    Lab Chip; 2016 Nov; 16(22):4424-4435. PubMed ID: 27757467
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Raman-on-chip device and detection fibres with fibre Bragg grating for analysis of solutions and particles.
    Dochow S; Becker M; Spittel R; Beleites C; Stanca S; Latka I; Schuster K; Kobelke J; Unger S; Henkel T; Mayer G; Albert J; Rothhardt M; Krafft C; Popp J
    Lab Chip; 2013 Mar; 13(6):1109-13. PubMed ID: 23344502
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A microfluidic device for digital manipulation of gaseous samples.
    Enel A; Bourrelier A; Vial J; ThiƩbaut D; Bourlon B
    Lab Chip; 2020 Apr; 20(7):1290-1297. PubMed ID: 32159188
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Photonic crystal fibre as an optofluidic reactor for the measurement of photochemical kinetics with sub-picomole sensitivity.
    Williams GO; Chen JS; Euser TG; Russell PS; Jones AC
    Lab Chip; 2012 Sep; 12(18):3356-61. PubMed ID: 22767267
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A world-to-chip interface for digital microfluidics.
    Yang H; Luk VN; Abelgawad M; Barbulovic-Nad I; Wheeler AR
    Anal Chem; 2009 Feb; 81(3):1061-7. PubMed ID: 19115860
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Digital microfluidics and nuclear magnetic resonance spectroscopy for in situ diffusion measurements and reaction monitoring.
    Swyer I; von der Ecken S; Wu B; Jenne A; Soong R; Vincent F; Schmidig D; Frei T; Busse F; Stronks HJ; Simpson AJ; Wheeler AR
    Lab Chip; 2019 Feb; 19(4):641-653. PubMed ID: 30648175
    [TBL] [Abstract][Full Text] [Related]  

  • 52. World-to-digital-microfluidic interface enabling extraction and purification of RNA from human whole blood.
    Jebrail MJ; Sinha A; Vellucci S; Renzi RF; Ambriz C; Gondhalekar C; Schoeniger JS; Patel KD; Branda SS
    Anal Chem; 2014 Apr; 86(8):3856-62. PubMed ID: 24479881
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A Versatile Microfluidic Device for Automating Synthetic Biology.
    Shih SC; Goyal G; Kim PW; Koutsoubelis N; Keasling JD; Adams PD; Hillson NJ; Singh AK
    ACS Synth Biol; 2015 Oct; 4(10):1151-64. PubMed ID: 26075958
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Microfluidic manipulation by spiral hollow-fibre actuators.
    Li S; Zhang R; Zhang G; Shuai L; Chang W; Hu X; Zou M; Zhou X; An B; Qian D; Liu Z
    Nat Commun; 2022 Mar; 13(1):1331. PubMed ID: 35288561
    [TBL] [Abstract][Full Text] [Related]  

  • 55. In-line microfluidic integration of photonic crystal fibres as a highly sensitive refractometer.
    Wu C; Tse ML; Liu Z; Guan BO; Zhang AP; Lu C; Tam HY
    Analyst; 2014 Nov; 139(21):5422-9. PubMed ID: 25142213
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Multiscale variation-aware techniques for high-performance digital microfluidic lab-on-a-chip component placement.
    Liao C; Hu S
    IEEE Trans Nanobioscience; 2011 Mar; 10(1):51-8. PubMed ID: 21511570
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Pluronic additives: a solution to sticky problems in digital microfluidics.
    Luk VN; Mo GCh; Wheeler AR
    Langmuir; 2008 Jun; 24(12):6382-9. PubMed ID: 18481875
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Optofluidic differential spectroscopy for absorbance detection of sub-nanolitre liquid samples.
    Song W; Yang J
    Lab Chip; 2012 Apr; 12(7):1251-4. PubMed ID: 22334303
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A new angle on pluronic additives: advancing droplets and understanding in digital microfluidics.
    Au SH; Kumar P; Wheeler AR
    Langmuir; 2011 Jul; 27(13):8586-94. PubMed ID: 21651299
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A feedback control system for high-fidelity digital microfluidics.
    Shih SC; Fobel R; Kumar P; Wheeler AR
    Lab Chip; 2011 Feb; 11(3):535-40. PubMed ID: 21038034
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.