These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

50 related articles for article (PubMed ID: 26233010)

  • 1. Analysis of an impulse response measured at the basilar membrane of the chinchilla.
    Wit HP; Bell A
    J Acoust Soc Am; 2015 Jul; 138(1):94-6. PubMed ID: 26233010
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Iterated intracochlear reflection shapes the envelopes of basilar-membrane click responses.
    Shera CA
    J Acoust Soc Am; 2015 Dec; 138(6):3717-22. PubMed ID: 26723327
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Basilar-membrane interference patterns from multiple internal reflection of cochlear traveling waves.
    Shera CA; Cooper NP
    J Acoust Soc Am; 2013 Apr; 133(4):2224-39. PubMed ID: 23556591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comment on "Mutual suppression in the 6 kHz region of sensitive chinchilla cochleae" [J. Acoust. Soc. Am. 121, 2805-2818 (2007)].
    Cheatham MA
    J Acoust Soc Am; 2008 Feb; 123(2):602-5. PubMed ID: 18247865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spontaneous basilar-membrane oscillation (SBMO) and coherent reflection.
    de Boer E; Nuttall AL
    J Assoc Res Otolaryngol; 2006 Mar; 7(1):26-37. PubMed ID: 16429234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast Waves at the Base of the Cochlea.
    Recio-Spinoso A; Rhode WS
    PLoS One; 2015; 10(6):e0129556. PubMed ID: 26062000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of rocking stapes motions on the cochlear fluid flow and on the basilar membrane motion.
    Edom E; Obrist D; Henniger R; Kleiser L; Sim JH; Huber AM
    J Acoust Soc Am; 2013 Nov; 134(5):3749-58. PubMed ID: 24180785
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Further studies on the dual-resonance nonlinear filter model of cochlear frequency selectivity: responses to tones.
    Lopez-Najera A; Lopez-Poveda EA; Meddis R
    J Acoust Soc Am; 2007 Oct; 122(4):2124-34. PubMed ID: 17902850
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wiener kernels of chinchilla auditory-nerve fibers: verification using responses to tones, clicks, and noise and comparison with basilar-membrane vibrations.
    Temchin AN; Recio-Spinoso A; van Dijk P; Ruggero MA
    J Neurophysiol; 2005 Jun; 93(6):3635-48. PubMed ID: 15659530
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-tone suppression in the basilar membrane of the cochlea: mechanical basis of auditory-nerve rate suppression.
    Ruggero MA; Robles L; Rich NC
    J Neurophysiol; 1992 Oct; 68(4):1087-99. PubMed ID: 1432070
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Implications of causality, time-translation invariance, linearity, and minimum-phase behavior for basilar membrane response functions.
    Koshigoe S; Tubis A
    J Acoust Soc Am; 1982 May; 71(5):1194-200. PubMed ID: 7085990
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of basilar membrane radial velocity profile on fluid coupling in the cochlea.
    Ni G; Elliott SJ
    J Acoust Soc Am; 2013 Mar; 133(3):EL181-7. PubMed ID: 23464126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distortion product otoacoustic emissions and basilar membrane vibration in the 6-9 kHz region of sensitive chinchilla cochleae.
    Rhode WS
    J Acoust Soc Am; 2007 Nov; 122(5):2725-37. PubMed ID: 18189565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of irregularities in basilar membrane impedance on TEOAEs: theoretical considerations.
    Wada H; Nakajima T; Ohyama K
    ORL J Otorhinolaryngol Relat Spec; 1999; 61(5):252-8. PubMed ID: 10529646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intracochlear pressure and organ of corti impedance from a linear active three-dimensional model.
    Yoon YJ; Puria S; Steele CR
    ORL J Otorhinolaryngol Relat Spec; 2006; 68(6):365-72. PubMed ID: 17065831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A simple electrical lumped-element model simulates intra-cochlear sound pressures and cochlear impedance below 2 kHz.
    Marquardt T; Hensel J
    J Acoust Soc Am; 2013 Nov; 134(5):3730-8. PubMed ID: 24180783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Similarity of traveling-wave delays in the hearing organs of humans and other tetrapods.
    Ruggero MA; Temchin AN
    J Assoc Res Otolaryngol; 2007 Jun; 8(2):153-66. PubMed ID: 17401604
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wever and Lawrence revisited: effects of nulling basilar membrane movement on concomitant whole-nerve action potential.
    Offut G
    J Aud Res; 1986 Jan; 26(1):43-54. PubMed ID: 3610990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial distribution of electrically induced high frequency vibration on basilar membrane.
    Hu N; Nuttall AL; Ren T
    Hear Res; 2005 Apr; 202(1-2):35-46. PubMed ID: 15811697
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical bases of frequency tuning and neural excitation at the base of the cochlea: comparison of basilar-membrane vibrations and auditory-nerve-fiber responses in chinchilla.
    Ruggero MA; Narayan SS; Temchin AN; Recio A
    Proc Natl Acad Sci U S A; 2000 Oct; 97(22):11744-50. PubMed ID: 11050204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.