These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 26233130)
21. Ab initio calculations on low-lying electronic states of TeO2 and Franck-Condon simulation of the (1)1B2 <-- X1A1 TeO2 absorption spectrum including anharmonicity. Lee EP; Mok DK; Chau FT; Dyke JM J Chem Phys; 2004 Aug; 121(7):2962-74. PubMed ID: 15291606 [TBL] [Abstract][Full Text] [Related]
22. Updated potential energy function of the Rb2 a(3)Σu(+) state in the attractive and repulsive regions determined from its joint analysis with the 2(3)Π0g state. Guan Y; Han X; Yang J; Zhou Z; Dai X; Ahmed EH; Lyyra AM; Magnier S; Ivanov VS; Skublov AS; Sovkov VB J Chem Phys; 2013 Oct; 139(14):144303. PubMed ID: 24116615 [TBL] [Abstract][Full Text] [Related]
23. Isotope effects and Born-Oppenheimer breakdown in excited singlet states of the lithium dimer. Adohi-Krou A; Martin F; Ross AJ; Linton C; Le Roy RJ J Chem Phys; 2004 Oct; 121(13):6309-16. PubMed ID: 15446926 [TBL] [Abstract][Full Text] [Related]
24. Rovibrational dynamics of the strontium molecule in the A(1)Σ(u)+, c(3)Π(u), and a(3)Σ(u)+ manifold from state-of-the-art ab initio calculations. Skomorowski W; Pawłowski F; Koch CP; Moszynski R J Chem Phys; 2012 May; 136(19):194306. PubMed ID: 22612094 [TBL] [Abstract][Full Text] [Related]
25. New analytical model for the ozone electronic ground state potential surface and accurate ab initio vibrational predictions at high energy range. Tyuterev VG; Kochanov RV; Tashkun SA; Holka F; Szalay PG J Chem Phys; 2013 Oct; 139(13):134307. PubMed ID: 24116568 [TBL] [Abstract][Full Text] [Related]
26. Transition dipole moments between the low-lying Ω(g,u)(+∕-) states of the Rb2 and Cs2 molecules. Allouche AR; Aubert-Frécon M J Chem Phys; 2012 Mar; 136(11):114302. PubMed ID: 22443759 [TBL] [Abstract][Full Text] [Related]
27. Excited electronic states of thiophene: high resolution photoabsorption Fourier transform spectroscopy and ab initio calculations. Holland DM; Trofimov AB; Seddon EA; Gromov EV; Korona T; de Oliveira N; Archer LE; Joyeux D; Nahon L Phys Chem Chem Phys; 2014 Oct; 16(39):21629-44. PubMed ID: 25196806 [TBL] [Abstract][Full Text] [Related]
28. Electronic states of F2CO as studied by electron energy-loss spectroscopy and ab initio calculations. Kato H; Nunes Y; Duflot D; Limão-Vieira P; Tanaka H J Phys Chem A; 2011 Apr; 115(13):2708-18. PubMed ID: 21405040 [TBL] [Abstract][Full Text] [Related]
29. The low-lying electronic states of ArXe+ and their potential energy functions. Zehnder O; Merkt F J Chem Phys; 2008 Jan; 128(1):014306. PubMed ID: 18190195 [TBL] [Abstract][Full Text] [Related]
30. Are ab initio quantum chemistry methods able to predict vibrational states up to the dissociation limit for multi-electron molecules close to spectroscopic accuracy? Szalay PG; Holka F; Fremont J; Rey M; Peterson KA; Tyuterev VG Phys Chem Chem Phys; 2011 Mar; 13(9):3654-9. PubMed ID: 21180724 [TBL] [Abstract][Full Text] [Related]
31. Structural and spectroscopic study of the LiRb molecule beyond the Born-Oppenheimer approximation. Jendoubi I; Berriche H; Ben Ouada H; Gadea FX J Phys Chem A; 2012 Mar; 116(11):2945-60. PubMed ID: 22360282 [TBL] [Abstract][Full Text] [Related]
32. An experimental and ab initio study of the electronic spectrum of the jet-cooled F2BO free radical. Grimminger R; Sheridan PM; Clouthier DJ J Chem Phys; 2014 Apr; 140(16):164302. PubMed ID: 24784265 [TBL] [Abstract][Full Text] [Related]
33. Ion-pair dissociation dynamics of O2 in the range 17.2-17.5 eV studied by XUV laser and velocity map imaging method. Zhou C; Mo Y J Chem Phys; 2013 Aug; 139(8):084314. PubMed ID: 24007004 [TBL] [Abstract][Full Text] [Related]
34. Ab initio spin-orbit configuration interaction calculations for high-lying states of the HeNe quasimolecule. Buenker RJ; Liebermann HP; Devdariani AZ J Phys Chem A; 2007 Feb; 111(7):1307-18. PubMed ID: 17266285 [TBL] [Abstract][Full Text] [Related]
35. Ab initio investigation of electronic properties of the magnesium hydride molecular ion. Khemiri N; Dardouri R; Oujia B; Gadéa FX J Phys Chem A; 2013 Sep; 117(36):8915-24. PubMed ID: 23944679 [TBL] [Abstract][Full Text] [Related]
36. Low-lying electronic states of the Ti2 dimer: electronic absorption spectroscopy in rare gas matrices in concert with quantum chemical calculations. Hübner O; Himmel HJ; Manceron L; Klopper W J Chem Phys; 2004 Oct; 121(15):7195-206. PubMed ID: 15473787 [TBL] [Abstract][Full Text] [Related]
37. Low-temperature rate coefficients for vibrational relaxation of (3)Σ(u)(+)Rb2 molecules by (3)He and (4)He atoms. Viel A; Launay JM J Phys Chem A; 2014 Aug; 118(33):6529-35. PubMed ID: 24839871 [TBL] [Abstract][Full Text] [Related]
38. Observations of the high vibrational levels of the B('')B̄ (1)Σ(u)(+) state of H2. Chartrand AM; Duan W; Ekey RC; McCormack EF J Chem Phys; 2016 Jan; 144(1):014307. PubMed ID: 26747806 [TBL] [Abstract][Full Text] [Related]
39. Ab initio many-electron study for the low-lying states of the alkali hydride cations in the adiabatic representation. Yan L; Qu Y; Liu C; Wang J; Buenker RJ J Chem Phys; 2012 Mar; 136(12):124304. PubMed ID: 22462854 [TBL] [Abstract][Full Text] [Related]
40. Potentials of the D¹0u⁺ (6¹S₀) and F³1u(6³P₂) electronic Rydberg states of Cd₂ from ab initio calculations and laser-induced fluorescence excitation spectra. Koperski J; Strojecki M; Krośnicki M; Urbańczyk T J Phys Chem A; 2011 Jun; 115(25):6851-60. PubMed ID: 21410152 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]