These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 26233152)

  • 1. Hydrated proton and hydroxide charge transfer at the liquid/vapor interface of water.
    Soniat M; Kumar R; Rick SW
    J Chem Phys; 2015 Jul; 143(4):044702. PubMed ID: 26233152
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure, dynamics, and reactivity of hydrated electrons by ab initio molecular dynamics.
    Marsalek O; Uhlig F; VandeVondele J; Jungwirth P
    Acc Chem Res; 2012 Jan; 45(1):23-32. PubMed ID: 21899274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Propensity of Hydrated Excess Protons and Hydroxide Anions for the Air-Water Interface.
    Tse YL; Chen C; Lindberg GE; Kumar R; Voth GA
    J Am Chem Soc; 2015 Oct; 137(39):12610-6. PubMed ID: 26366480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proton transfer through hydrogen bonds in two-dimensional water layers: a theoretical study based on ab initio and quantum-classical simulations.
    Bankura A; Chandra A
    J Chem Phys; 2015 Jan; 142(4):044701. PubMed ID: 25637997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Organization of water and atmospherically relevant ions and solutes: vibrational sum frequency spectroscopy at the vapor/liquid and liquid/solid interfaces.
    Jubb AM; Hua W; Allen HC
    Acc Chem Res; 2012 Jan; 45(1):110-9. PubMed ID: 22066822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The curious case of the hydrated proton.
    Knight C; Voth GA
    Acc Chem Res; 2012 Jan; 45(1):101-9. PubMed ID: 21859071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectroscopic studies of solvated hydrogen and hydroxide ions at aqueous surfaces.
    Tarbuck TL; Ota ST; Richmond GL
    J Am Chem Soc; 2006 Nov; 128(45):14519-27. PubMed ID: 17090035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction between liquid water and hydroxide revealed by core-hole de-excitation.
    Aziz EF; Ottosson N; Faubel M; Hertel IV; Winter B
    Nature; 2008 Sep; 455(7209):89-91. PubMed ID: 18769437
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterizing Charge Transfer at Water Ice Interfaces.
    Lee AJ; Rick SW
    J Phys Chem Lett; 2012 Nov; 3(21):3199-203. PubMed ID: 26296029
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solvation structure of hydroxyl radical by Car-Parrinello molecular dynamics.
    Khalack JM; Lyubartsev AP
    J Phys Chem A; 2005 Jan; 109(2):378-86. PubMed ID: 16833356
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrated excess proton at water-hydrophobic interfaces.
    Iuchi S; Chen H; Paesani F; Voth GA
    J Phys Chem B; 2009 Apr; 113(13):4017-30. PubMed ID: 18821788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigating hydroxide anion interfacial activity by classical and multistate empirical valence bond molecular dynamics simulations.
    Wick CD; Dang LX
    J Phys Chem A; 2009 Jun; 113(22):6356-64. PubMed ID: 19391589
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydroxide ion can move faster than an excess proton through one-dimensional water chains in hydrophobic narrow pores.
    Bankura A; Chandra A
    J Phys Chem B; 2012 Aug; 116(32):9744-57. PubMed ID: 22793519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A first principles molecular dynamics study of the solvation structure and migration kinetics of an excess proton and a hydroxide ion in binary water-ammonia mixtures.
    Bankura A; Chandra A
    J Chem Phys; 2012 Mar; 136(11):114509. PubMed ID: 22443779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The nature and transport mechanism of hydrated hydroxide ions in aqueous solution.
    Tuckerman ME; Marx D; Parrinello M
    Nature; 2002 Jun; 417(6892):925-9. PubMed ID: 12087398
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The self-consistent charge density functional tight binding method applied to liquid water and the hydrated excess proton: benchmark simulations.
    Maupin CM; Aradi B; Voth GA
    J Phys Chem B; 2010 May; 114(20):6922-31. PubMed ID: 20426461
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An explanation for the charge on water's surface.
    Gray-Weale A; Beattie JK
    Phys Chem Chem Phys; 2009 Dec; 11(46):10994-1005. PubMed ID: 19924335
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Revealing charge-transfer effects in gas-phase water chemistry.
    Cappelletti D; Ronca E; Belpassi L; Tarantelli F; Pirani F
    Acc Chem Res; 2012 Sep; 45(9):1571-80. PubMed ID: 22775359
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of Presolvation and Anharmonicity in Aqueous Phase Hydrated Proton Solvation and Transport.
    Biswas R; Tse YL; Tokmakoff A; Voth GA
    J Phys Chem B; 2016 Mar; 120(8):1793-804. PubMed ID: 26575795
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proton transfer and the mobilities of the H+ and OH- ions from studies of a dissociating model for water.
    Lee SH; Rasaiah JC
    J Chem Phys; 2011 Sep; 135(12):124505. PubMed ID: 21974533
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.