BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 26233167)

  • 1. Computation of the binding free energy of peptides to graphene in explicit water.
    Welch CM; Camden AN; Barr SA; Leuty GM; Kedziora GS; Berry RJ
    J Chem Phys; 2015 Jul; 143(4):045104. PubMed ID: 26233167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulations of peptide-graphene interactions in explicit water.
    Camden AN; Barr SA; Berry RJ
    J Phys Chem B; 2013 Sep; 117(37):10691-7. PubMed ID: 23964693
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An atomic charge model for graphene oxide for exploring its bioadhesive properties in explicit water.
    Stauffer D; Dragneva N; Floriano WB; Mawhinney RC; Fanchini G; French S; Rubel O
    J Chem Phys; 2014 Jul; 141(4):044705. PubMed ID: 25084935
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Favorable adsorption of capped amino acids on graphene substrate driven by desolvation effect.
    Dragneva N; Floriano WB; Stauffer D; Mawhinney RC; Fanchini G; Rubel O
    J Chem Phys; 2013 Nov; 139(17):174711. PubMed ID: 24206326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atomic-level study of adsorption, conformational change, and dimerization of an α-helical peptide at graphene surface.
    Ou L; Luo Y; Wei G
    J Phys Chem B; 2011 Aug; 115(32):9813-22. PubMed ID: 21692466
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electronic properties of a graphene device with peptide adsorption: insight from simulation.
    Akdim B; Pachter R; Kim SS; Naik RR; Walsh TR; Trohalaki S; Hong G; Kuang Z; Farmer BL
    ACS Appl Mater Interfaces; 2013 Aug; 5(15):7470-7. PubMed ID: 23869852
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical study of adsorption of amino acids on graphene and BN sheet in gas and aqueous phase with empirical DFT dispersion correction.
    Singla P; Riyaz M; Singhal S; Goel N
    Phys Chem Chem Phys; 2016 Feb; 18(7):5597-604. PubMed ID: 26863069
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nature of molecular interactions of peptides with gold, palladium, and Pd-Au bimetal surfaces in aqueous solution.
    Heinz H; Farmer BL; Pandey RB; Slocik JM; Patnaik SS; Pachter R; Naik RR
    J Am Chem Soc; 2009 Jul; 131(28):9704-14. PubMed ID: 19552440
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A van der Waals density functional study of adenine on graphene: single-molecular adsorption and overlayer binding.
    Berland K; Chakarova-Käck SD; Cooper VR; Langreth DC; Schröder E
    J Phys Condens Matter; 2011 Apr; 23(13):135001. PubMed ID: 21403239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydration patterns of graphene-based nanomaterials (GBNMs) play a major role in the stability of a helical protein: a molecular dynamics simulation study.
    Baweja L; Balamurugan K; Subramanian V; Dhawan A
    Langmuir; 2013 Nov; 29(46):14230-8. PubMed ID: 24144078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular-level understanding of the adsorption mechanism of a graphite-binding peptide at the water/graphite interface.
    Penna MJ; Mijajlovic M; Tamerler C; Biggs MJ
    Soft Matter; 2015 Jul; 11(26):5192-203. PubMed ID: 25920450
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biotic-Abiotic Interactions: Factors that Influence Peptide-Graphene Interactions.
    Kim SS; Kuang Z; Ngo YH; Farmer BL; Naik RR
    ACS Appl Mater Interfaces; 2015 Sep; 7(36):20447-53. PubMed ID: 26305504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contribution of water molecules in the spontaneous release of protein by graphene sheets.
    Liang LJ; Wang Q; Wu T; Sun TY; Kang Y
    Chemphyschem; 2013 Sep; 14(13):2902-9. PubMed ID: 23881843
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dispersion of graphene sheets in aqueous solution by oligodeoxynucleotides.
    Liang LJ; Wu T; Kang Y; Wang Q
    Chemphyschem; 2013 Jun; 14(8):1626-32. PubMed ID: 23554343
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemistry of aqueous silica nanoparticle surfaces and the mechanism of selective peptide adsorption.
    Patwardhan SV; Emami FS; Berry RJ; Jones SE; Naik RR; Deschaume O; Heinz H; Perry CC
    J Am Chem Soc; 2012 Apr; 134(14):6244-56. PubMed ID: 22435500
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Density functional theory calculations and molecular dynamics simulations of the adsorption of biomolecules on graphene surfaces.
    Qin W; Li X; Bian WW; Fan XJ; Qi JY
    Biomaterials; 2010 Feb; 31(5):1007-16. PubMed ID: 19880174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multicanonical ab inito QM/MM molecular dynamics simulation of a peptide in an aqueous environment.
    Jono R; Watanabe Y; Shimizu K; Terada T
    J Comput Chem; 2010 Apr; 31(6):1168-75. PubMed ID: 19847783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Free energy of adsorption for a peptide at a liquid/solid interface via nonequilibrium molecular dynamics.
    Mijajlovic M; Penna MJ; Biggs MJ
    Langmuir; 2013 Mar; 29(9):2919-26. PubMed ID: 23394469
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How water layers on graphene affect folding and adsorption of TrpZip2.
    Peter EK; Agarwal M; Kim B; Pivkin IV; Shea JE
    J Chem Phys; 2014 Dec; 141(22):22D511. PubMed ID: 25494782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular Interactions between Graphene and Biological Molecules.
    Zou X; Wei S; Jasensky J; Xiao M; Wang Q; Brooks Iii CL; Chen Z
    J Am Chem Soc; 2017 Feb; 139(5):1928-1936. PubMed ID: 28092440
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.