These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 26233185)
21. Combining support vector machine with genetic algorithm to classify ultrasound breast tumor images. Wu WJ; Lin SW; Moon WK Comput Med Imaging Graph; 2012 Dec; 36(8):627-33. PubMed ID: 22939834 [TBL] [Abstract][Full Text] [Related]
22. An Artificial Immune System-Based Support Vector Machine Approach for Classifying Ultrasound Breast Tumor Images. Wu WJ; Lin SW; Moon WK J Digit Imaging; 2015 Oct; 28(5):576-85. PubMed ID: 25561066 [TBL] [Abstract][Full Text] [Related]
23. Computer-Aided Diagnosis for Breast Ultrasound Using Computerized BI-RADS Features and Machine Learning Methods. Shan J; Alam SK; Garra B; Zhang Y; Ahmed T Ultrasound Med Biol; 2016 Apr; 42(4):980-8. PubMed ID: 26806441 [TBL] [Abstract][Full Text] [Related]
24. Comparison of automated breast ultrasonography to handheld ultrasonography in detecting and diagnosing breast lesions. Jeh SK; Kim SH; Choi JJ; Jung SS; Choe BJ; Park S; Park MS Acta Radiol; 2016 Feb; 57(2):162-9. PubMed ID: 25766727 [TBL] [Abstract][Full Text] [Related]
25. Background echotexture classification in breast ultrasound: inter-observer agreement study. Kim WH; Lee SH; Chang JM; Cho N; Moon WK Acta Radiol; 2017 Dec; 58(12):1427-1433. PubMed ID: 28273746 [TBL] [Abstract][Full Text] [Related]
26. Intensity-Invariant Texture Analysis for Classification of BI-RADS Category 3 Breast Masses. Lo CM; Moon WK; Huang CS; Chen JH; Yang MC; Chang RF Ultrasound Med Biol; 2015 Jul; 41(7):2039-48. PubMed ID: 25843514 [TBL] [Abstract][Full Text] [Related]
27. Computer-aided detection of breast cancers using Haar-like features in automated 3D breast ultrasound. Tan T; Mordang JJ; van Zelst J; Grivegnée A; Gubern-Mérida A; Melendez J; Mann RM; Zhang W; Platel B; Karssemeijer N Med Phys; 2015 Apr; 42(4):1498-504. PubMed ID: 25832040 [TBL] [Abstract][Full Text] [Related]
28. Computer-aided diagnosis using morphological features for classifying breast lesions on ultrasound. Huang YL; Chen DR; Jiang YR; Kuo SJ; Wu HK; Moon WK Ultrasound Obstet Gynecol; 2008 Sep; 32(4):565-72. PubMed ID: 18383556 [TBL] [Abstract][Full Text] [Related]
29. Computer-aided analysis of ultrasound elasticity images for classification of benign and malignant breast masses. Moon WK; Choi JW; Cho N; Park SH; Chang JM; Jang M; Kim KG AJR Am J Roentgenol; 2010 Dec; 195(6):1460-5. PubMed ID: 21098210 [TBL] [Abstract][Full Text] [Related]
30. A deep learning framework for supporting the classification of breast lesions in ultrasound images. Han S; Kang HK; Jeong JY; Park MH; Kim W; Bang WC; Seong YK Phys Med Biol; 2017 Sep; 62(19):7714-7728. PubMed ID: 28753132 [TBL] [Abstract][Full Text] [Related]
31. Automatic segmentation of tumors in B-Mode breast ultrasound images using information gain based neutrosophic clustering. Lal M; Kaur L; Gupta S J Xray Sci Technol; 2018; 26(2):209-225. PubMed ID: 29154313 [TBL] [Abstract][Full Text] [Related]
32. Breast ultrasound image classification based on multiple-instance learning. Ding J; Cheng HD; Huang J; Liu J; Zhang Y J Digit Imaging; 2012 Oct; 25(5):620-7. PubMed ID: 22733258 [TBL] [Abstract][Full Text] [Related]
33. Computer-aided diagnosis based on speckle patterns in ultrasound images. Moon WK; Lo CM; Huang CS; Chen JH; Chang RF Ultrasound Med Biol; 2012 Jul; 38(7):1251-61. PubMed ID: 22579548 [TBL] [Abstract][Full Text] [Related]
34. Analysis of background echotexture on automated breast ultrasound using BI-RADS and modified classification: Association with clinical features and mammographic density. Choi EJ; Choi H; Byon JH; Youk JH J Clin Ultrasound; 2023 May; 51(4):687-695. PubMed ID: 37014174 [TBL] [Abstract][Full Text] [Related]
35. Computer-aided tumor detection based on multi-scale blob detection algorithm in automated breast ultrasound images. Moon WK; Shen YW; Bae MS; Huang CS; Chen JH; Chang RF IEEE Trans Med Imaging; 2013 Jul; 32(7):1191-200. PubMed ID: 23232413 [TBL] [Abstract][Full Text] [Related]
36. Quantification of elastic heterogeneity using contourlet-based texture analysis in shear-wave elastography for breast tumor classification. Zhang Q; Xiao Y; Chen S; Wang C; Zheng H Ultrasound Med Biol; 2015 Feb; 41(2):588-600. PubMed ID: 25444693 [TBL] [Abstract][Full Text] [Related]
37. Feasibility Testing: Three-dimensional Tumor Mapping in Different Orientations of Automated Breast Ultrasound. Lo CM; Chan SW; Yang YW; Chang YC; Huang CS; Jou YS; Chang RF Ultrasound Med Biol; 2016 May; 42(5):1201-10. PubMed ID: 26825468 [TBL] [Abstract][Full Text] [Related]
38. Diagnostic Performance Using Automated Breast Ultrasound System for Breast Cancer in Chinese Women Aged 40 Years or Older: A Comparative Study. Zhang L; Bao LY; Tan YJ; Zhu LQ; Xu XJ; Zhu QQ; Shan YN; Zhao J; Xie LS; Liu J Ultrasound Med Biol; 2019 Dec; 45(12):3137-3144. PubMed ID: 31563481 [TBL] [Abstract][Full Text] [Related]
39. Speckle reduction approach for breast ultrasound image and its application to breast cancer diagnosis. Su Y; Wang H; Wang Y; Guo Y; Cheng H; Zhang Y; Tian J Eur J Radiol; 2010 Jul; 75(1):e136-41. PubMed ID: 19913380 [TBL] [Abstract][Full Text] [Related]