BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

462 related articles for article (PubMed ID: 26233216)

  • 21. Modeling of Microbubble-Enhanced High-Intensity Focused Ultrasound.
    Gnanaskandan A; Hsiao CT; Chahine G
    Ultrasound Med Biol; 2019 Jul; 45(7):1743-1761. PubMed ID: 30982546
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Magnetic resonance-guided shielding of prefocal acoustic obstacles in focused ultrasound therapy: application to intercostal ablation in liver.
    Salomir R; Petrusca L; Auboiroux V; Muller A; Vargas MI; Morel DR; Goget T; Breguet R; Terraz S; Hopple J; Montet X; Becker CD; Viallon M
    Invest Radiol; 2013 Jun; 48(6):366-80. PubMed ID: 23344514
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Computational aspects in high intensity ultrasonic surgery planning.
    Pulkkinen A; Hynynen K
    Comput Med Imaging Graph; 2010 Jan; 34(1):69-78. PubMed ID: 19740625
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dual concentric-sectored HIFU transducer with phase-shifted ultrasound excitation for expanded necrotic region: a simulation study.
    Jeong J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 May; 60(5):924-31. PubMed ID: 23661126
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A novel, flat, electronically-steered phased array transducer for tissue ablation: preliminary results.
    Ellens NP; Lucht BB; Gunaseelan ST; Hudson JM; Hynynen KH
    Phys Med Biol; 2015 Mar; 60(6):2195-215. PubMed ID: 25683789
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Determining temperature distribution in tissue in the focal plane of the high (>100 W/cm(2)) intensity focused ultrasound beam using phase shift of ultrasound echoes.
    Karwat P; Kujawska T; Lewin PA; Secomski W; Gambin B; Litniewski J
    Ultrasonics; 2016 Feb; 65():211-9. PubMed ID: 26498063
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparative study of lesions created by high-intensity focused ultrasound using sequential discrete and continuous scanning strategies.
    Fan T; Liu Z; Zhang D; Tang M
    IEEE Trans Biomed Eng; 2013 Mar; 60(3):763-9. PubMed ID: 21914564
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nonthermal ablation of deep brain targets: A simulation study on a large animal model.
    Top CB; White PJ; McDannold NJ
    Med Phys; 2016 Feb; 43(2):870-82. PubMed ID: 26843248
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Temperature rise in tissue ablation using multi-frequency ultrasound.
    Sijia Guo ; Yun Jing ; Xiaoning Jiang
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Aug; 60(8):1699-707. PubMed ID: 25004540
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Preclinical evaluation of a low-frequency transcranial MRI-guided focused ultrasound system in a primate model.
    McDannold N; Livingstone M; Top CB; Sutton J; Todd N; Vykhodtseva N
    Phys Med Biol; 2016 Nov; 61(21):7664-7687. PubMed ID: 27740941
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluation of acoustic-thermal simulations of in vivo magnetic resonance guided focused ultrasound ablative therapy.
    Richards N; Christensen D; Hillyard J; Kline M; Johnson S; Odéen H; Payne A
    Int J Hyperthermia; 2024; 41(1):2301489. PubMed ID: 38234019
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cavitation-enhanced ultrasound thermal therapy by combined low- and high-frequency ultrasound exposure.
    Liu HL; Chen WS; Chen JS; Shih TC; Chen YY; Lin WL
    Ultrasound Med Biol; 2006 May; 32(5):759-67. PubMed ID: 16677935
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ultrasound surgery using multiple sonications--treatment time considerations.
    Fan X; Hynynen K
    Ultrasound Med Biol; 1996; 22(4):471-82. PubMed ID: 8795174
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Magnetic resonance imaging for the exploitation of bubble-enhanced heating by high-intensity focused ultrasound: a feasibility study in ex vivo liver.
    Elbes D; Denost Q; Robert B; Köhler MO; Tanter M; Bruno Q
    Ultrasound Med Biol; 2014 May; 40(5):956-64. PubMed ID: 24462160
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of nonlinear ultrasound propagation on high intensity brain therapy.
    Pinton G; Aubry JF; Fink M; Tanter M
    Med Phys; 2011 Mar; 38(3):1207-16. PubMed ID: 21520833
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pre-clinical study of in vivo magnetic resonance-guided bubble-enhanced heating in pig liver.
    Elbes D; Denost Q; Laurent C; Trillaud H; Rullier A; Quesson B
    Ultrasound Med Biol; 2013 Aug; 39(8):1388-97. PubMed ID: 23562012
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of different parameters in the fast scanning method for HIFU treatment.
    Qiao S; Shen G; Bai J; Chen Y
    Med Phys; 2012 Oct; 39(10):5795-813. PubMed ID: 23039619
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Numerical and Experimental Evaluation of High-Intensity Focused Ultrasound-Induced Lesions in Liver Tissue Ex Vivo.
    Haddadi S; Ahmadian MT
    J Ultrasound Med; 2018 Jun; 37(6):1481-1491. PubMed ID: 29193279
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reducing lesion aberration by dual-frequency focused ultrasound ablations.
    Chen WS; Liu HL; Tung YS; Wang JC; Ding YH; Jan CK
    Int J Hyperthermia; 2011; 27(7):637-47. PubMed ID: 21966885
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Harmonic motion imaging for focused ultrasound (HMIFU): a fully integrated technique for sonication and monitoring of thermal ablation in tissues.
    Maleke C; Konofagou EE
    Phys Med Biol; 2008 Mar; 53(6):1773-93. PubMed ID: 18367802
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.