These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
556 related articles for article (PubMed ID: 26233224)
1. External validation of a publicly available computer assisted diagnostic tool for mammographic mass lesions with two high prevalence research datasets. Benndorf M; Burnside ES; Herda C; Langer M; Kotter E Med Phys; 2015 Aug; 42(8):4987-96. PubMed ID: 26233224 [TBL] [Abstract][Full Text] [Related]
2. Development of an online, publicly accessible naive Bayesian decision support tool for mammographic mass lesions based on the American College of Radiology (ACR) BI-RADS lexicon. Benndorf M; Kotter E; Langer M; Herda C; Wu Y; Burnside ES Eur Radiol; 2015 Jun; 25(6):1768-75. PubMed ID: 25576230 [TBL] [Abstract][Full Text] [Related]
3. Breast cancer CADx based on BI-RAds descriptors from two mammographic views. Gupta S; Chyn PF; Markey MK Med Phys; 2006 Jun; 33(6):1810-7. PubMed ID: 16872088 [TBL] [Abstract][Full Text] [Related]
4. Using computer-extracted image features for modeling of error-making patterns in detection of mammographic masses among radiology residents. Zhang J; Lo JY; Kuzmiak CM; Ghate SV; Yoon SC; Mazurowski MA Med Phys; 2014 Sep; 41(9):091907. PubMed ID: 25186394 [TBL] [Abstract][Full Text] [Related]
5. Automated Analysis of Unregistered Multi-View Mammograms With Deep Learning. Carneiro G; Nascimento J; Bradley AP IEEE Trans Med Imaging; 2017 Nov; 36(11):2355-2365. PubMed ID: 28920897 [TBL] [Abstract][Full Text] [Related]
6. Scoring System to Stratify Malignancy Risks for Mammographic Microcalcifications Based on Breast Imaging Reporting and Data System 5th Edition Descriptors. Youk JH; Gweon HM; Son EJ; Eun NL; Choi EJ; Kim JA Korean J Radiol; 2019 Dec; 20(12):1646-1652. PubMed ID: 31854152 [TBL] [Abstract][Full Text] [Related]
7. Understanding Clinical Mammographic Breast Density Assessment: a Deep Learning Perspective. Mohamed AA; Luo Y; Peng H; Jankowitz RC; Wu S J Digit Imaging; 2018 Aug; 31(4):387-392. PubMed ID: 28932980 [TBL] [Abstract][Full Text] [Related]
8. Correspondence in texture features between two mammographic views. Gupta S; Markey MK Med Phys; 2005 Jun; 32(6):1598-606. PubMed ID: 16013719 [TBL] [Abstract][Full Text] [Related]
9. Computerized analysis of multiple-mammographic views: potential usefulness of special view mammograms in computer-aided diagnosis. Huo Z; Giger ML; Vyborny CJ IEEE Trans Med Imaging; 2001 Dec; 20(12):1285-92. PubMed ID: 11811828 [TBL] [Abstract][Full Text] [Related]
10. Determination of mammographic breast density using a deep convolutional neural network. Ciritsis A; Rossi C; Vittoria De Martini I; Eberhard M; Marcon M; Becker AS; Berger N; Boss A Br J Radiol; 2019 Jan; 92(1093):20180691. PubMed ID: 30209957 [TBL] [Abstract][Full Text] [Related]
11. Discriminating solitary cysts from soft tissue lesions in mammography using a pretrained deep convolutional neural network. Kooi T; van Ginneken B; Karssemeijer N; den Heeten A Med Phys; 2017 Mar; 44(3):1017-1027. PubMed ID: 28094850 [TBL] [Abstract][Full Text] [Related]
12. Computer-aided classification of BI-RADS category 3 breast lesions. Buchbinder SS; Leichter IS; Lederman RB; Novak B; Bamberger PN; Sklair-Levy M; Yarmish G; Fields SI Radiology; 2004 Mar; 230(3):820-3. PubMed ID: 14739315 [TBL] [Abstract][Full Text] [Related]
13. Predicting error in detecting mammographic masses among radiology trainees using statistical models based on BI-RADS features. Grimm LJ; Ghate SV; Yoon SC; Kuzmiak CM; Kim C; Mazurowski MA Med Phys; 2014 Mar; 41(3):031909. PubMed ID: 24593727 [TBL] [Abstract][Full Text] [Related]
14. Fusion of k-Gabor features from medio-lateral-oblique and craniocaudal view mammograms for improved breast cancer diagnosis. Sasikala S; Ezhilarasi M J Cancer Res Ther; 2018; 14(5):1036-1041. PubMed ID: 30197344 [TBL] [Abstract][Full Text] [Related]
15. A New Computer-Aided Diagnosis System with Modified Genetic Feature Selection for BI-RADS Classification of Breast Masses in Mammograms. Boumaraf S; Liu X; Ferkous C; Ma X Biomed Res Int; 2020; 2020():7695207. PubMed ID: 32462017 [TBL] [Abstract][Full Text] [Related]
16. Breast Imaging Reporting and Data System (BI-RADS) breast composition descriptors: automated measurement development for full field digital mammography. Fowler EE; Sellers TA; Lu B; Heine JJ Med Phys; 2013 Nov; 40(11):113502. PubMed ID: 24320473 [TBL] [Abstract][Full Text] [Related]
17. Provision of the DDSM mammography metadata in an accessible format. Benndorf M; Herda C; Langer M; Kotter E Med Phys; 2014 May; 41(5):051902. PubMed ID: 24784381 [TBL] [Abstract][Full Text] [Related]
18. Development and evaluation of a case-based reasoning classifier for prediction of breast biopsy outcome with BI-RADS lexicon. Bilska-Wolak AO; Floyd CE Med Phys; 2002 Sep; 29(9):2090-100. PubMed ID: 12349930 [TBL] [Abstract][Full Text] [Related]
19. Automated mammographic breast density estimation using a fully convolutional network. Lee J; Nishikawa RM Med Phys; 2018 Mar; 45(3):1178-1190. PubMed ID: 29363774 [TBL] [Abstract][Full Text] [Related]
20. Developing a new case based computer-aided detection scheme and an adaptive cueing method to improve performance in detecting mammographic lesions. Tan M; Aghaei F; Wang Y; Zheng B Phys Med Biol; 2017 Jan; 62(2):358-376. PubMed ID: 27997380 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]