These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 26233656)

  • 21. Competition between polyphosphate- and glycogen-accumulating organisms in biological phosphorus removal systems--effect of temperature.
    Whang LM; Park JK
    Water Sci Technol; 2002; 46(1-2):191-4. PubMed ID: 12216623
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A modification to the Activated Sludge Model No. 2 based on the competition between phosphorus-accumulating organisms and glycogen-accumulating organisms.
    Manga J; Ferrer J; Garcia-Usach F; Seco A
    Water Sci Technol; 2001; 43(11):161-71. PubMed ID: 11443958
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effect of GAOs (glycogen accumulating organisms) on anaerobic carbon requirements in full-scale Australian EBPR (enhanced biological phosphorus removal) plants.
    Saunders AM; Oehmen A; Blackall LL; Yuan Z; Keller J
    Water Sci Technol; 2003; 47(11):37-43. PubMed ID: 12906269
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The impact of aeration on the competition between polyphosphate accumulating organisms and glycogen accumulating organisms.
    Carvalheira M; Oehmen A; Carvalho G; Eusébio M; Reis MAM
    Water Res; 2014 Dec; 66():296-307. PubMed ID: 25222333
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The long-term effect of carbon source on the competition between polyphosphorus accumulating organisms and glycogen accumulating organism in a continuous plug-flow anaerobic/aerobic (A/O) process.
    Wang Y; Jiang F; Zhang Z; Xing M; Lu Z; Wu M; Yang J; Peng Y
    Bioresour Technol; 2010 Jan; 101(1):98-104. PubMed ID: 19729302
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Model-based evaluation of competition between polyphosphate- and glycogen-accumulating organisms.
    Whang LM; Filipe CD; Park JK
    Water Res; 2007 Mar; 41(6):1312-24. PubMed ID: 17275874
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metabolic shift of polyphosphate-accumulating organisms with different levels of polyphosphate storage.
    Acevedo B; Oehmen A; Carvalho G; Seco A; Borrás L; Barat R
    Water Res; 2012 Apr; 46(6):1889-900. PubMed ID: 22297158
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metabolic modelling of full-scale enhanced biological phosphorus removal sludge.
    Lanham AB; Oehmen A; Saunders AM; Carvalho G; Nielsen PH; Reis MAM
    Water Res; 2014 Dec; 66():283-295. PubMed ID: 25222332
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhanced biological phosphorus removal in an anaerobic-aerobic sequencing batch reactor: characteristics of carbon metabolism.
    Jeon CO; Lee DS; Park JM
    Water Environ Res; 2001; 73(3):295-300. PubMed ID: 11561588
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Altered carbon flow by polyphosphate-accumulating organisms during enhanced biological phosphorus removal.
    Ahn CH; Park JK; Whang LM
    Water Environ Res; 2009 Feb; 81(2):184-91. PubMed ID: 19323290
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Research advance in polyphosphate-accumulating microorganisms in enhanced biological phosphorus removal process].
    Zheng J; Ran W; Zhong Z; He J
    Ying Yong Sheng Tai Xue Bao; 2004 Aug; 15(8):1487-90. PubMed ID: 15574014
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of polyaluminium chloride addition on community structures of polyphosphate and glycogen accumulating organisms in biological phosphorus removal (BPR) systems.
    Wang B; Zeng W; Fan Z; Wang C; Meng Q; Peng Y
    Bioresour Technol; 2020 Feb; 297():122431. PubMed ID: 31780243
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhanced biological phosphorus removal in an anaerobic-aerobic sequencing batch reactor: effect of pH.
    Jeon CO; Lee DS; Lee MW; Park JM
    Water Environ Res; 2001; 73(3):301-6. PubMed ID: 11561589
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metabolic model for acetate uptake by a mixed culture of phosphate- and glycogen-accumulating organisms under anaerobic conditions.
    Yagci N; Artan N; Cokgör EU; Randall CW; Orhon D
    Biotechnol Bioeng; 2003 Nov; 84(3):359-73. PubMed ID: 12968290
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modeling hydraulic transport and anaerobic uptake by PAOs and GAOs during wastewater feeding in EBPR granular sludge reactors.
    Weissbrodt DG; Holliger C; Morgenroth E
    Biotechnol Bioeng; 2017 Aug; 114(8):1688-1702. PubMed ID: 28322436
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhanced biological phosphorus removal from wastewater by biomass with different phosphorus contents, Part I: Experimental results and comparison with metabolic models.
    Schuler AJ; Jenkins D
    Water Environ Res; 2003; 75(6):485-98. PubMed ID: 14704008
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ecophysiology of a group of uncultured Gammaproteobacterial glycogen-accumulating organisms in full-scale enhanced biological phosphorus removal wastewater treatment plants.
    Kong Y; Xia Y; Nielsen JL; Nielsen PH
    Environ Microbiol; 2006 Mar; 8(3):479-89. PubMed ID: 16478454
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The selective role of nitrite in the PAO/GAO competition.
    Tayà C; Garlapati VK; Guisasola A; Baeza JA
    Chemosphere; 2013 Oct; 93(4):612-8. PubMed ID: 23845433
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Response of performance, sludge characteristics, and microbial communities of biological phosphorus removal system to salinity.
    Wang X; Song X; Yu D; Qiu Y; Zhao J
    Chemosphere; 2022 Dec; 309(Pt 1):136728. PubMed ID: 36209870
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison between aerobic and anoxic metabolism of denitrifying-EBPR sludge: effect of biomass poly-hydroxyalkanoates content.
    Kapagiannidis AG; Zafiriadis I; Aivasidis A
    N Biotechnol; 2013 Jan; 30(2):227-37. PubMed ID: 22677086
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.