BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 26233766)

  • 21. Fate and effects of sediment-associated triclosan in subtropical freshwater microcosms.
    Peng FJ; Diepens NJ; Pan CG; Bracewell SA; Ying GG; Salvito D; Selck H; Van den Brink PJ
    Aquat Toxicol; 2018 Sep; 202():117-125. PubMed ID: 30025380
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Deriving the aquatic predicted no-effect concentrations (PNECs) of three chlorophenols for the Taihu Lake, China.
    Lei BL; Huang SB; Jin XW; Wang Z
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010 Dec; 45(14):1823-31. PubMed ID: 20936560
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Triclosan inhibits arbuscular mycorrhizal colonization in three wetland plants.
    Twanabasu BR; Smith CM; Stevens KJ; Venables BJ; Sears WC
    Sci Total Environ; 2013 Mar; 447():450-7. PubMed ID: 23410867
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Species sensitivity distribution evaluation for chronic nickel toxicity to marine organisms.
    DeForest DK; Schlekat CE
    Integr Environ Assess Manag; 2013 Oct; 9(4):580-9. PubMed ID: 23553986
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Occurrence, degradation and potential ecological risks of triclosan in environment.].
    Zhang LN; Gong XS; An J; Wei SH
    Ying Yong Sheng Tai Xue Bao; 2018 Sep; 29(9):3139-3146. PubMed ID: 30411592
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biochemical and genotoxic effect of triclosan on earthworms (Eisenia fetida) using contact and soil tests.
    Lin D; Xie X; Zhou Q; Liu Y
    Environ Toxicol; 2012 Jul; 27(7):385-92. PubMed ID: 22707219
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Responses of earthworms and microbial communities in their guts to Triclosan.
    Ma L; Xie Y; Han Z; Giesy JP; Zhang X
    Chemosphere; 2017 Feb; 168():1194-1202. PubMed ID: 27810239
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Deriving a water quality guideline for protection of aquatic communities exposed to triclosan in the Canadian environment.
    Hill KL; Breton RL; Manning GE; Teed RS; Capdevielle M; Slezak B
    Integr Environ Assess Manag; 2018 Jul; 14(4):437-441. PubMed ID: 29528192
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Risk assessment of triclosan released from sewage treatment plants in European rivers using a combination of risk quotient methodology and Monte Carlo simulation.
    Thomaidi VS; Matsoukas C; Stasinakis AS
    Sci Total Environ; 2017 Dec; 603-604():487-494. PubMed ID: 28641188
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ecotoxicity of triclosan in soil: an approach using different species.
    Ramires PF; Tavella RA; Escarrone AL; Volcão LM; Honscha LC; de Lima Brum R; da Silva AB; da Silva Júnior FMR
    Environ Sci Pollut Res Int; 2021 Aug; 28(30):41233-41241. PubMed ID: 33782822
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Critical review on the environmental behaviors and toxicity of triclosan and its removal technologies.
    Jiang Y; Liu L; Jin B; Liu Y; Liang X
    Sci Total Environ; 2024 Jul; 932():173013. PubMed ID: 38719041
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of elevated temperature and decreased soil moisture content on triclosan ecotoxicity to earthworm E. fetida.
    Miškelytė D; Žaltauskaitė J
    Environ Sci Pollut Res Int; 2023 Apr; 30(17):51018-51029. PubMed ID: 36807863
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Searching for a more sensitive earthworm species to be used in pesticide homologation tests - a meta-analysis.
    Pelosi C; Joimel S; Makowski D
    Chemosphere; 2013 Jan; 90(3):895-900. PubMed ID: 23084259
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Insights into the sediment toxicity of personal care products to freshwater oligochaete worms using Fourier transform infrared spectroscopy.
    Peng FJ; Hu LX; Pan CG; Ying GG; Van den Brink PJ
    Ecotoxicol Environ Saf; 2019 May; 172():296-302. PubMed ID: 30716664
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Contribution for the derivation of a soil screening value (SSV) for uranium, using a natural reference soil.
    Caetano AL; Marques CR; Gavina A; Carvalho F; Gonçalves F; da Silva EF; Pereira R
    PLoS One; 2014; 9(10):e108041. PubMed ID: 25353962
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Novel Approach to Derive the Predicted No-Effect Concentration (PNEC) of Benzophenone-3 (BP-3) Using the Species Sensitivity Distribution (SSD) Method: Suggestion of a New PNEC Value for BP-3.
    Jung JW; Kang JS; Choi J; Park JW
    Int J Environ Res Public Health; 2021 Mar; 18(7):. PubMed ID: 33807469
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Systematic Consideration of Parameter Uncertainty and Variability in Probabilistic Species Sensitivity Distributions.
    Wigger H; Kawecki D; Nowack B; Adam V
    Integr Environ Assess Manag; 2020 Mar; 16(2):211-222. PubMed ID: 31535755
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantifying the precision of ecological risk: Conventional assessment factor method vs. species sensitivity distribution method.
    Sorgog K; Kamo M
    Ecotoxicol Environ Saf; 2019 Nov; 183():109494. PubMed ID: 31376805
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Predicted no-effect concentration and risk assessment for 17-[beta]-estradiol in waters of China.
    Wu F; Fang Y; Li Y; Cui X; Zhang R; Guo G; Giesy JP
    Rev Environ Contam Toxicol; 2014; 228():31-56. PubMed ID: 24162091
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ecotoxicological evaluation of the risk posed by bisphenol A, triclosan, and 4-nonylphenol in coastal waters using early life stages of marine organisms (Isochrysis galbana, Mytilus galloprovincialis, Paracentrotus lividus, and Acartia clausi).
    Tato T; Salgueiro-González N; León VM; González S; Beiras R
    Environ Pollut; 2018 Jan; 232():173-182. PubMed ID: 28951039
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.