BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

548 related articles for article (PubMed ID: 26234155)

  • 1. Mechanistic Origin of Microtubule Dynamic Instability and Its Modulation by EB Proteins.
    Zhang R; Alushin GM; Brown A; Nogales E
    Cell; 2015 Aug; 162(4):849-59. PubMed ID: 26234155
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Separating the effects of nucleotide and EB binding on microtubule structure.
    Zhang R; LaFrance B; Nogales E
    Proc Natl Acad Sci U S A; 2018 Jul; 115(27):E6191-E6200. PubMed ID: 29915050
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural transitions in the GTP cap visualized by cryo-electron microscopy of catalytically inactive microtubules.
    LaFrance BJ; Roostalu J; Henkin G; Greber BJ; Zhang R; Normanno D; McCollum CO; Surrey T; Nogales E
    Proc Natl Acad Sci U S A; 2022 Jan; 119(2):. PubMed ID: 34996871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-resolution microtubule structures reveal the structural transitions in αβ-tubulin upon GTP hydrolysis.
    Alushin GM; Lander GC; Kellogg EH; Zhang R; Baker D; Nogales E
    Cell; 2014 May; 157(5):1117-29. PubMed ID: 24855948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of tubulin-tubulin lattice contacts in the mechanism of microtubule dynamic instability.
    Manka SW; Moores CA
    Nat Struct Mol Biol; 2018 Jul; 25(7):607-615. PubMed ID: 29967541
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformational changes in tubulin in GMPCPP and GDP-taxol microtubules observed by cryoelectron microscopy.
    Yajima H; Ogura T; Nitta R; Okada Y; Sato C; Hirokawa N
    J Cell Biol; 2012 Aug; 198(3):315-22. PubMed ID: 22851320
    [TBL] [Abstract][Full Text] [Related]  

  • 7. EBs recognize a nucleotide-dependent structural cap at growing microtubule ends.
    Maurer SP; Fourniol FJ; Bohner G; Moores CA; Surrey T
    Cell; 2012 Apr; 149(2):371-82. PubMed ID: 22500803
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microtubule structure by cryo-EM: snapshots of dynamic instability.
    Manka SW; Moores CA
    Essays Biochem; 2018 Dec; 62(6):737-751. PubMed ID: 30315096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nucleotide- and Mal3-dependent changes in fission yeast microtubules suggest a structural plasticity view of dynamics.
    von Loeffelholz O; Venables NA; Drummond DR; Katsuki M; Cross R; Moores CA
    Nat Commun; 2017 Dec; 8(1):2110. PubMed ID: 29235477
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Doublecortin Is Excluded from Growing Microtubule Ends and Recognizes the GDP-Microtubule Lattice.
    Ettinger A; van Haren J; Ribeiro SA; Wittmann T
    Curr Biol; 2016 Jun; 26(12):1549-1555. PubMed ID: 27238282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. X-ray and Cryo-EM structures reveal mutual conformational changes of Kinesin and GTP-state microtubules upon binding.
    Morikawa M; Yajima H; Nitta R; Inoue S; Ogura T; Sato C; Hirokawa N
    EMBO J; 2015 May; 34(9):1270-86. PubMed ID: 25777528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CLASPs are required for proper microtubule localization of end-binding proteins.
    Grimaldi AD; Maki T; Fitton BP; Roth D; Yampolsky D; Davidson MW; Svitkina T; Straube A; Hayashi I; Kaverina I
    Dev Cell; 2014 Aug; 30(3):343-52. PubMed ID: 25117684
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of GTP hydrolysis in microtubule dynamics: information from a slowly hydrolyzable analogue, GMPCPP.
    Hyman AA; Salser S; Drechsel DN; Unwin N; Mitchison TJ
    Mol Biol Cell; 1992 Oct; 3(10):1155-67. PubMed ID: 1421572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. End binding proteins are obligatory dimers.
    Sen I; Veprintsev D; Akhmanova A; Steinmetz MO
    PLoS One; 2013; 8(9):e74448. PubMed ID: 24040250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microtubule-binding sites of the CH domain of EB1 and its autoinhibition revealed by NMR.
    Kanaba T; Maesaki R; Mori T; Ito Y; Hakoshima T; Mishima M
    Biochim Biophys Acta; 2013 Feb; 1834(2):499-507. PubMed ID: 23128140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural Insights of WHAMM's Interaction with Microtubules by Cryo-EM.
    Liu T; Dai A; Cao Y; Zhang R; Dong MQ; Wang HW
    J Mol Biol; 2017 May; 429(9):1352-1363. PubMed ID: 28351611
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mal3, the Schizosaccharomyces pombe homolog of EB1, changes the microtubule lattice.
    des Georges A; Katsuki M; Drummond DR; Osei M; Cross RA; Amos LA
    Nat Struct Mol Biol; 2008 Oct; 15(10):1102-8. PubMed ID: 18794845
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GTPgammaS microtubules mimic the growing microtubule end structure recognized by end-binding proteins (EBs).
    Maurer SP; Bieling P; Cope J; Hoenger A; Surrey T
    Proc Natl Acad Sci U S A; 2011 Mar; 108(10):3988-93. PubMed ID: 21368119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visualizing microtubule structural transitions and interactions with associated proteins.
    Nogales E; Zhang R
    Curr Opin Struct Biol; 2016 Apr; 37():90-6. PubMed ID: 26803284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microtubule Plus End Dynamics - Do We Know How Microtubules Grow?: Cells boost microtubule growth by promoting distinct structural transitions at growing microtubule ends.
    van Haren J; Wittmann T
    Bioessays; 2019 Mar; 41(3):e1800194. PubMed ID: 30730055
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.