These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
699 related articles for article (PubMed ID: 26234438)
1. Lipid Production of Heterotrophic Chlorella sp. from Hydrolysate Mixtures of Lipid-Extracted Microalgal Biomass Residues and Molasses. Zheng H; Ma X; Gao Z; Wan Y; Min M; Zhou W; Li Y; Liu Y; Huang H; Chen P; Ruan R Appl Biochem Biotechnol; 2015 Oct; 177(3):662-74. PubMed ID: 26234438 [TBL] [Abstract][Full Text] [Related]
2. Lipid production of Chlorella vulgaris from lipid-extracted microalgal biomass residues through two-step enzymatic hydrolysis. Zheng H; Gao Z; Yin F; Ji X; Huang H Bioresour Technol; 2012 Aug; 117():1-6. PubMed ID: 22609706 [TBL] [Abstract][Full Text] [Related]
3. Biomass and lipid production of heterotrophic microalgae Chlorella protothecoides by using biodiesel-derived crude glycerol. Chen YH; Walker TH Biotechnol Lett; 2011 Oct; 33(10):1973-83. PubMed ID: 21691839 [TBL] [Abstract][Full Text] [Related]
4. Effect of CO₂ supply conditions on lipid production of Chlorella vulgaris from enzymatic hydrolysates of lipid-extracted microalgal biomass residues. Zheng H; Gao Z; Yin F; Ji X; Huang H Bioresour Technol; 2012 Dec; 126():24-30. PubMed ID: 23073086 [TBL] [Abstract][Full Text] [Related]
5. Screening, growth medium optimisation and heterotrophic cultivation of microalgae for biodiesel production. Jia Z; Liu Y; Daroch M; Geng S; Cheng JJ Appl Biochem Biotechnol; 2014 Aug; 173(7):1667-79. PubMed ID: 24845038 [TBL] [Abstract][Full Text] [Related]
6. Dual-mode cultivation of Chlorella protothecoides applying inter-reactors gas transfer improves microalgae biodiesel production. Santos CA; Nobre B; Lopes da Silva T; Pinheiro HM; Reis A J Biotechnol; 2014 Aug; 184():74-83. PubMed ID: 24862195 [TBL] [Abstract][Full Text] [Related]
7. Cultivation of Chlorella sp. with livestock waste compost for lipid production. Zhu LD; Li ZH; Guo DB; Huang F; Nugroho Y; Xia K Bioresour Technol; 2017 Jan; 223():296-300. PubMed ID: 27729191 [TBL] [Abstract][Full Text] [Related]
8. Sequential heterotrophy-dilution-photoinduction cultivation for efficient microalgal biomass and lipid production. Fan J; Huang J; Li Y; Han F; Wang J; Li X; Wang W; Li S Bioresour Technol; 2012 May; 112():206-11. PubMed ID: 22406065 [TBL] [Abstract][Full Text] [Related]
9. Effects of temperature and substrate concentration on lipid production by Chlorella vulgaris from enzymatic hydrolysates of lipid-extracted microalgal biomass residues (LMBRs). Ma X; Zheng H; Huang H; Liu Y; Ruan R Appl Biochem Biotechnol; 2014 Oct; 174(4):1631-1650. PubMed ID: 25138600 [TBL] [Abstract][Full Text] [Related]
10. Lipid production of microalga Chlorella sorokiniana CY1 is improved by light source arrangement, bioreactor operation mode and deep-sea water supplements. Chen CY; Chang HY Biotechnol J; 2016 Mar; 11(3):356-62. PubMed ID: 26632521 [TBL] [Abstract][Full Text] [Related]
11. The utilization of post-chlorinated municipal domestic wastewater for biomass and lipid production by Chlorella spp. under batch conditions. Mutanda T; Karthikeyan S; Bux F Appl Biochem Biotechnol; 2011 Aug; 164(7):1126-38. PubMed ID: 21347654 [TBL] [Abstract][Full Text] [Related]
12. Optimization of flocculation efficiency of lipid-rich marine Chlorella sp. biomass and evaluation of its composition in different cultivation modes. Mandik YI; Cheirsilp B; Boonsawang P; Prasertsan P Bioresour Technol; 2015 Apr; 182():89-97. PubMed ID: 25682228 [TBL] [Abstract][Full Text] [Related]
13. Biodiesel production from hydrolysate of Cyperus esculentus waste by Chlorella vulgaris. Wang W; Zhou W; Liu J; Li Y; Zhang Y Bioresour Technol; 2013 May; 136():24-9. PubMed ID: 23548401 [TBL] [Abstract][Full Text] [Related]
14. Hydrolysate of lipid extracted microalgal biomass residue: An algal growth promoter and enhancer. Maurya R; Paliwal C; Chokshi K; Pancha I; Ghosh T; Satpati GG; Pal R; Ghosh A; Mishra S Bioresour Technol; 2016 May; 207():197-204. PubMed ID: 26890794 [TBL] [Abstract][Full Text] [Related]
15. A novel one-step method for oil-rich biomass production and harvesting by co-cultivating microalgae with filamentous fungi in molasses wastewater. Yang L; Li H; Wang Q Bioresour Technol; 2019 Mar; 275():35-43. PubMed ID: 30576912 [TBL] [Abstract][Full Text] [Related]
16. Enhancement of microalgal biomass and lipid productivities by a model of photoautotrophic culture with heterotrophic cells as seed. Han F; Huang J; Li Y; Wang W; Wang J; Fan J; Shen G Bioresour Technol; 2012 Aug; 118():431-7. PubMed ID: 22717560 [TBL] [Abstract][Full Text] [Related]
17. Effect of carbon sources on growth and lipid accumulation of newly isolated microalgae cultured under mixotrophic condition. Lin TS; Wu JY Bioresour Technol; 2015 May; 184():100-107. PubMed ID: 25443671 [TBL] [Abstract][Full Text] [Related]
18. Waste molasses alone displaces glucose-based medium for microalgal fermentation towards cost-saving biodiesel production. Yan D; Lu Y; Chen YF; Wu Q Bioresour Technol; 2011 Jun; 102(11):6487-93. PubMed ID: 21474303 [TBL] [Abstract][Full Text] [Related]
19. Production of biomass and lipid by the microalgae Chlorella protothecoides with heterotrophic-Cu(II) stressed (HCuS) coupling cultivation. Li Y; Mu J; Chen D; Han F; Xu H; Kong F; Xie F; Feng B Bioresour Technol; 2013 Nov; 148():283-92. PubMed ID: 24055971 [TBL] [Abstract][Full Text] [Related]
20. Enhancing lipid productivity by co-cultivation of Chlorella sp. U4341 and Monoraphidium sp. FXY-10. Zhao P; Yu X; Li J; Tang X; Huang Z J Biosci Bioeng; 2014 Jul; 118(1):72-7. PubMed ID: 24491914 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]