These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
699 related articles for article (PubMed ID: 26234438)
41. Characteristics of lipid extraction from Chlorella sp. cultivated in outdoor raceway ponds with mixture of ethyl acetate and ethanol for biodiesel production. Lu W; Wang Z; Yuan Z Bioresour Technol; 2015 Sep; 191():433-7. PubMed ID: 25838039 [TBL] [Abstract][Full Text] [Related]
42. Feasibility of biodiesel production by microalgae Chlorella sp. (FACHB-1748) under outdoor conditions. Zhou X; Xia L; Ge H; Zhang D; Hu C Bioresour Technol; 2013 Jun; 138():131-5. PubMed ID: 23612171 [TBL] [Abstract][Full Text] [Related]
43. Oil accumulation via heterotrophic/mixotrophic Chlorella protothecoides. Heredia-Arroyo T; Wei W; Hu B Appl Biochem Biotechnol; 2010 Nov; 162(7):1978-95. PubMed ID: 20443076 [TBL] [Abstract][Full Text] [Related]
44. Nitrogen starvation strategies and photobioreactor design for enhancing lipid content and lipid production of a newly isolated microalga Chlorella vulgaris ESP-31: implications for biofuels. Yeh KL; Chang JS Biotechnol J; 2011 Nov; 6(11):1358-66. PubMed ID: 21381209 [TBL] [Abstract][Full Text] [Related]
45. Mixotrophic continuous flow cultivation of Chlorella protothecoides for lipids. Wang Y; Rischer H; Eriksen NT; Wiebe MG Bioresour Technol; 2013 Sep; 144():608-14. PubMed ID: 23907064 [TBL] [Abstract][Full Text] [Related]
46. Effect of solvents and oil content on direct transesterification of wet oil-bearing microalgal biomass of Chlorella vulgaris ESP-31 for biodiesel synthesis using immobilized lipase as the biocatalyst. Tran DT; Chen CL; Chang JS Bioresour Technol; 2013 May; 135():213-21. PubMed ID: 23131310 [TBL] [Abstract][Full Text] [Related]
47. Bioethanol production using carbohydrate-rich microalgae biomass as feedstock. Ho SH; Huang SW; Chen CY; Hasunuma T; Kondo A; Chang JS Bioresour Technol; 2013 May; 135():191-8. PubMed ID: 23116819 [TBL] [Abstract][Full Text] [Related]
49. Improved biomass and lipid production in a mixotrophic culture of Chlorella sp. KR-1 with addition of coal-fired flue-gas. Praveenkumar R; Kim B; Choi E; Lee K; Park JY; Lee JS; Lee YC; Oh YK Bioresour Technol; 2014 Nov; 171():500-5. PubMed ID: 25227588 [TBL] [Abstract][Full Text] [Related]
50. A symbiotic gas exchange between bioreactors enhances microalgal biomass and lipid productivities: taking advantage of complementary nutritional modes. Santos CA; Ferreira ME; da Silva TL; Gouveia L; Novais JM; Reis A J Ind Microbiol Biotechnol; 2011 Aug; 38(8):909-17. PubMed ID: 20824486 [TBL] [Abstract][Full Text] [Related]
51. Improving cell growth and lipid accumulation in green microalgae Chlorella sp. via UV irradiation. Liu S; Zhao Y; Liu L; Ao X; Ma L; Wu M; Ma F Appl Biochem Biotechnol; 2015 Apr; 175(7):3507-18. PubMed ID: 25724975 [TBL] [Abstract][Full Text] [Related]
52. Lipid production by microalgae Chlorella protothecoides with volatile fatty acids (VFAs) as carbon sources in heterotrophic cultivation and its economic assessment. Fei Q; Fu R; Shang L; Brigham CJ; Chang HN Bioprocess Biosyst Eng; 2015 Apr; 38(4):691-700. PubMed ID: 25332127 [TBL] [Abstract][Full Text] [Related]
53. Using straw hydrolysate to cultivate Chlorella pyrenoidosa for high-value biomass production and the nitrogen regulation for biomass composition. Zhang TY; Wang XX; Wu YH; Wang JH; Deantes-Espinosa VM; Zhuang LL; Hu HY; Wu GX Bioresour Technol; 2017 Nov; 244(Pt 2):1254-1260. PubMed ID: 28645566 [TBL] [Abstract][Full Text] [Related]
55. Growth and metabolic characteristics of oleaginous microalgal isolates from Nilgiri biosphere Reserve of India. Thangavel K; Radha Krishnan P; Nagaiah S; Kuppusamy S; Chinnasamy S; Rajadorai JS; Nellaiappan Olaganathan G; Dananjeyan B BMC Microbiol; 2018 Jan; 18(1):1. PubMed ID: 29433435 [TBL] [Abstract][Full Text] [Related]
56. Effects of various abiotic factors on biomass growth and lipid yield of Chlorella minutissima for sustainable biodiesel production. Chandra R; Amit ; Ghosh UK Environ Sci Pollut Res Int; 2019 Feb; 26(4):3848-3861. PubMed ID: 30539390 [TBL] [Abstract][Full Text] [Related]
57. Bioethanol production from carbohydrate-enriched residual biomass obtained after lipid extraction of Chlorella sp. KR-1. Lee OK; Oh YK; Lee EY Bioresour Technol; 2015 Nov; 196():22-7. PubMed ID: 26218538 [TBL] [Abstract][Full Text] [Related]
58. Improvement of biomass production by Chlorella sp. MJ 11/11 for use as a feedstock for biodiesel. Ghosh S; Roy S; Das D Appl Biochem Biotechnol; 2015 Apr; 175(7):3322-35. PubMed ID: 25690351 [TBL] [Abstract][Full Text] [Related]
59. Lipid production for biofuels from hydrolyzate of waste activated sludge by heterotrophic Chlorella protothecoides. Wen Q; Chen Z; Li P; Duan R; Ren N Bioresour Technol; 2013 Sep; 143():695-8. PubMed ID: 23856018 [TBL] [Abstract][Full Text] [Related]
60. Enhancement of total lipid yield by nitrogen, carbon, and iron supplementation in isolated microalgae. Sivaramakrishnan R; Incharoensakdi A J Phycol; 2017 Aug; 53(4):855-868. PubMed ID: 28523645 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]