These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 26234726)

  • 1. Magnetophoresis of superparamagnetic nanoparticles at low field gradient: hydrodynamic effect.
    Leong SS; Ahmad Z; Lim J
    Soft Matter; 2015 Sep; 11(35):6968-80. PubMed ID: 26234726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low-gradient magnetic separation of magnetic nanoparticles under continuous flow: Experimental study, transport mechanism and mathematical modelling.
    Tan YW; Leong SS; Lim J; Yeoh WM; Toh PY
    Electrophoresis; 2022 Nov; 43(21-22):2234-2249. PubMed ID: 35921231
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unified View of Magnetic Nanoparticle Separation under Magnetophoresis.
    Leong SS; Ahmad Z; Low SC; Camacho J; Faraudo J; Lim J
    Langmuir; 2020 Jul; 36(28):8033-8055. PubMed ID: 32551702
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetophoresis of iron oxide nanoparticles at low field gradient: the role of shape anisotropy.
    Lim J; Yeap SP; Leow CH; Toh PY; Low SC
    J Colloid Interface Sci; 2014 May; 421():170-7. PubMed ID: 24594047
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heteroaggregation between PEI-coated magnetic nanoparticles and algae: effect of particle size on algal harvesting efficiency.
    Ge S; Agbakpe M; Zhang W; Kuang L
    ACS Appl Mater Interfaces; 2015 Mar; 7(11):6102-8. PubMed ID: 25738208
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of low frequency magnetic fields on the growth of MNP-treated HT29 colon cancer cells.
    Spyridopoulou K; Makridis A; Maniotis N; Karypidou N; Myrovali E; Samaras T; Angelakeris M; Chlichlia K; Kalogirou O
    Nanotechnology; 2018 Apr; 29(17):175101. PubMed ID: 29498936
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heat Transfer in MHD Mixed Convection Flow of a Ferrofluid along a Vertical Channel.
    Gul A; Khan I; Shafie S; Khalid A; Khan A
    PLoS One; 2015; 10(11):e0141213. PubMed ID: 26550837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simple analytical model for the magnetophoretic separation of superparamagnetic dispersions in a uniform magnetic gradient.
    Andreu JS; Camacho J; Faraudo J; Benelmekki M; Rebollo C; Martínez LM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Aug; 84(2 Pt 1):021402. PubMed ID: 21928989
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeting intracellular compartments by magnetic polymeric nanoparticles.
    Kocbek P; Kralj S; Kreft ME; Kristl J
    Eur J Pharm Sci; 2013 Sep; 50(1):130-8. PubMed ID: 23603023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental investigation of magnetically actuated separation using tangential microfluidic channels and magnetic nanoparticles.
    Munir A; Zhu Z; Wang J; Zhou HS
    IET Nanobiotechnol; 2014 Jun; 8(2):102-10. PubMed ID: 25014081
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flow enhanced non-linear magnetophoretic separation of beads based on magnetic susceptibility.
    Li P; Kilinc D; Ran YF; Lee GU
    Lab Chip; 2013 Nov; 13(22):4400-8. PubMed ID: 24061548
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetic field-enhanced sedimentation of nanopowder magnetite in water flow.
    Bakhteeva Iu; Medvedeva I; Byzov I; Zhakov S; Yermakov A; Uimin M; Shchegoleva N
    Environ Technol; 2015; 36(13-16):1828-36. PubMed ID: 25650300
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A revised model for Jeffrey nanofluid subject to convective condition and heat generation/absorption.
    Hayat T; Aziz A; Muhammad T; Alsaedi A
    PLoS One; 2017; 12(2):e0172518. PubMed ID: 28231298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrodynamic modeling of targeted magnetic-particle delivery in a blood vessel.
    Weng HC
    J Biomech Eng; 2013 Mar; 135(3):34504. PubMed ID: 24231820
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application and reactivation of magnetic nanoparticles in Microcystis aeruginosa harvesting.
    Lin Z; Xu Y; Zhen Z; Fu Y; Liu Y; Li W; Luo C; Ding A; Zhang D
    Bioresour Technol; 2015 Aug; 190():82-8. PubMed ID: 25935387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of hyperthermia of magnetic nanoparticles by dehydrating DNA.
    Yu L; Liu J; Wu K; Klein T; Jiang Y; Wang JP
    Sci Rep; 2014 Nov; 4():7216. PubMed ID: 25427561
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro cell uptake of biocompatible magnetite/chitosan nanoparticles with high magnetization: a single-step synthesis approach for in-situ-modified magnetite by amino groups of chitosan.
    Wang Y; Li B; Xu F; Jia D; Feng Y; Zhou Y
    J Biomater Sci Polym Ed; 2012; 23(7):843-60. PubMed ID: 21418750
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Constitutive relationship and governing physical properties for magnetophoresis.
    Ayansiji AO; Dighe AV; Linninger AA; Singh MR
    Proc Natl Acad Sci U S A; 2020 Dec; 117(48):30208-30214. PubMed ID: 33203682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Field-dependent Brownian relaxation dynamics of a superparamagnetic clustered-particle suspension.
    Trisnanto SB; Kitamoto Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032306. PubMed ID: 25314445
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulation of magnetic nanoparticles crossing through a simplified blood-brain barrier model for Glioblastoma multiforme treatment.
    Gkountas AA; Polychronopoulos ND; Sofiadis GN; Karvelas EG; Spyrou LA; Sarris IE
    Comput Methods Programs Biomed; 2021 Nov; 212():106477. PubMed ID: 34736172
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.