These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

699 related articles for article (PubMed ID: 26234892)

  • 1. An investigation of thrust, depth and the impedance cardiogram as measures of cardiopulmonary resuscitation efficacy in a porcine model of cardiac arrest.
    Howe A; O'Hare P; Crawford P; Delafont B; McAlister O; Di Maio R; Clutton E; Adgey J; McEneaney D
    Resuscitation; 2015 Nov; 96():114-20. PubMed ID: 26234892
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transthoracic impedance for the monitoring of quality of manual chest compression during cardiopulmonary resuscitation.
    Zhang H; Yang Z; Huang Z; Chen B; Zhang L; Li H; Wu B; Yu T; Li Y
    Resuscitation; 2012 Oct; 83(10):1281-6. PubMed ID: 22828357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Association between Prehospital CPR Quality and End-Tidal Carbon Dioxide Levels in Out-of-Hospital Cardiac Arrest.
    Murphy RA; Bobrow BJ; Spaite DW; Hu C; McDannold R; Vadeboncoeur TF
    Prehosp Emerg Care; 2016; 20(3):369-77. PubMed ID: 26830353
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correlation between end-tidal carbon dioxide and the degree of compression of heart cavities measured by transthoracic echocardiography during cardiopulmonary resuscitation for out-of-hospital cardiac arrest.
    Skulec R; Vojtisek P; Cerny V
    Crit Care; 2019 Oct; 23(1):334. PubMed ID: 31665061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative relationship between end-tidal carbon dioxide and CPR quality during both in-hospital and out-of-hospital cardiac arrest.
    Sheak KR; Wiebe DJ; Leary M; Babaeizadeh S; Yuen TC; Zive D; Owens PC; Edelson DP; Daya MR; Idris AH; Abella BS
    Resuscitation; 2015 Apr; 89():149-54. PubMed ID: 25643651
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficacy of chest compressions directed by end-tidal CO2 feedback in a pediatric resuscitation model of basic life support.
    Hamrick JL; Hamrick JT; Lee JK; Lee BH; Koehler RC; Shaffner DH
    J Am Heart Assoc; 2014 Apr; 3(2):e000450. PubMed ID: 24732917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quality of cardiopulmonary resuscitation in out-of-hospital cardiac arrest before and after introduction of a mechanical chest compression device, LUCAS-2; a prospective, observational study.
    Tranberg T; Lassen JF; Kaltoft AK; Hansen TM; Stengaard C; Knudsen L; Trautner S; Terkelsen CJ
    Scand J Trauma Resusc Emerg Med; 2015 Apr; 23():37. PubMed ID: 25898992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. End-tidal carbon dioxide output in manual cardiopulmonary resuscitation versus active compression-decompression device during prehospital quality controlled resuscitation: a case series study.
    Setälä PA; Virkkunen IT; Kämäräinen AJ; Huhtala HSA; Virta JS; Yli-Hankala AM; Hoppu SE
    Emerg Med J; 2018 Jul; 35(7):428-432. PubMed ID: 29769232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Miniaturized mechanical chest compressor improves calculated cerebral perfusion pressure without compromising intracranial pressure during cardiopulmonary resuscitation in a porcine model of cardiac arrest.
    Xu J; Hu X; Yang Z; Wu X; Bisera J; Sun S; Tang W
    Resuscitation; 2014 May; 85(5):683-8. PubMed ID: 24463224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Suppression of the cardiopulmonary resuscitation artefacts using the instantaneous chest compression rate extracted from the thoracic impedance.
    Aramendi E; Ayala U; Irusta U; Alonso E; Eftestøl T; Kramer-Johansen J
    Resuscitation; 2012 Jun; 83(6):692-8. PubMed ID: 22198092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contribution of chest compressions to end-tidal carbon dioxide levels generated during out-of-hospital cardiopulmonary resuscitation.
    Gutiérrez JJ; Sandoval CL; Leturiondo M; Russell JK; Redondo K; Daya MR; Ruiz de Gauna S
    Resuscitation; 2022 Oct; 179():225-232. PubMed ID: 35835250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Feasibility of automated rhythm assessment in chest compression pauses during cardiopulmonary resuscitation.
    Ruiz J; Ayala U; Ruiz de Gauna S; Irusta U; González-Otero D; Alonso E; Kramer-Johansen J; Eftestøl T
    Resuscitation; 2013 Sep; 84(9):1223-8. PubMed ID: 23402965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Developing a kinematic understanding of chest compressions: the impact of depth and release time on blood flow during cardiopulmonary resuscitation.
    Lampe JW; Tai Y; Bratinov G; Weiland TR; Kaufman CL; Berg RA; Becker LB
    Biomed Eng Online; 2015 Nov; 14():102. PubMed ID: 26537881
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of CPR interruptions from transthoracic impedance during use of the LUCAS™ mechanical chest compression system.
    Yost D; Phillips RH; Gonzales L; Lick CJ; Satterlee P; Levy M; Barger J; Dodson P; Poggi S; Wojcik K; Niskanen RA; Chapman FW
    Resuscitation; 2012 Aug; 83(8):961-5. PubMed ID: 22310728
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intrathoracic pressure regulator during continuous-chest-compression advanced cardiac resuscitation improves vital organ perfusion pressures in a porcine model of cardiac arrest.
    Yannopoulos D; Nadkarni VM; McKnite SH; Rao A; Kruger K; Metzger A; Benditt DG; Lurie KG
    Circulation; 2005 Aug; 112(6):803-11. PubMed ID: 16061732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A tourniquet assisted cardiopulmonary resuscitation augments myocardial perfusion in a porcine model of cardiac arrest.
    Yang Z; Tang D; Wu X; Hu X; Xu J; Qian J; Yang M; Tang W
    Resuscitation; 2015 Jan; 86():49-53. PubMed ID: 25447436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correlation of end tidal carbon dioxide, amplitude spectrum area, and coronary perfusion pressure in a porcine model of cardiac arrest.
    Segal N; Metzger AK; Moore JC; India L; Lick MC; Berger PS; Tang W; Benditt DG; Lurie KG
    Physiol Rep; 2017 Sep; 5(17):. PubMed ID: 28899911
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling the impact of ventilations on the capnogram in out-of-hospital cardiac arrest.
    Gutiérrez JJ; Ruiz JM; Ruiz de Gauna S; González-Otero DM; Leturiondo M; Russell JK; Corcuera C; Urtusagasti JF; Daya MR
    PLoS One; 2020; 15(2):e0228395. PubMed ID: 32023298
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automatic detection of chest compressions for the assessment of CPR-quality parameters.
    Ayala U; Eftestøl T; Alonso E; Irusta U; Aramendi E; Wali S; Kramer-Johansen J
    Resuscitation; 2014 Jul; 85(7):957-63. PubMed ID: 24746788
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new device producing manual sternal compression with thoracic constraint for cardiopulmonary resuscitation.
    Niemann JT; Rosborough JP; Kassabian L; Salami B
    Resuscitation; 2006 May; 69(2):295-301. PubMed ID: 16457933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 35.