These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 26234929)

  • 1. Quasi-Static Magnetic Field Shielding Using Longitudinal Mu-Near-Zero Metamaterials.
    Lipworth G; Ensworth J; Seetharam K; Lee JS; Schmalenberg P; Nomura T; Reynolds MS; Smith DR; Urzhumov Y
    Sci Rep; 2015 Aug; 5():12764. PubMed ID: 26234929
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Matrix Metamaterial Shielding Design for Wireless Power Transfer to Control the Magnetic Field.
    Wei B; Wang S; Jiang C; Jiang B; He H; Liu M
    Materials (Basel); 2022 Apr; 15(7):. PubMed ID: 35408006
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Review of Metamaterials in Wireless Power Transfer.
    Rong C; Yan L; Li L; Li Y; Liu M
    Materials (Basel); 2023 Aug; 16(17):. PubMed ID: 37687701
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Parametrically shielding electromagnetic fields by nonlinear metamaterials.
    Feng S; Halterman K
    Phys Rev Lett; 2008 Feb; 100(6):063901. PubMed ID: 18352472
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Negative and near zero refraction metamaterials based on permanent magnetic ferrites.
    Bi K; Guo Y; Zhou J; Dong G; Zhao H; Zhao Q; Xiao Z; Liu X; Lan C
    Sci Rep; 2014 Feb; 4():4139. PubMed ID: 24553188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tunable dual-band negative refractive index in ferrite-based metamaterials.
    Bi K; Zhou J; Zhao H; Liu X; Lan C
    Opt Express; 2013 May; 21(9):10746-52. PubMed ID: 23669931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced Wireless Power Transmission Using Strong Paramagnetic Response.
    Ahn D; Kiani M; Ghovanloo M
    IEEE Trans Magn; 2014 Mar; 50(3):. PubMed ID: 26120144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mu and epsilon near zero metamaterials for perfect coherence and new antenna designs.
    Yang JJ; Francescato Y; Maier SA; Mao F; Huang M
    Opt Express; 2014 Apr; 22(8):9107-14. PubMed ID: 24787800
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shielding a high-sensitivity digital detector from electromagnetic interference.
    Hintenlang DE; Jiang X; Little KJ
    J Appl Clin Med Phys; 2018 Jul; 19(4):290-298. PubMed ID: 29908002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wireless power transfer system rigid to tissue characteristics using metamaterial inspired geometry for biomedical implant applications.
    Pokharel RK; Barakat A; Alshhawy S; Yoshitomi K; Sarris C
    Sci Rep; 2021 Mar; 11(1):5868. PubMed ID: 33712654
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hazard surveillance for industrial magnetic fields: II. Field characteristics from waveform measurements.
    Bowman JD; Methner MM
    Ann Occup Hyg; 2000 Dec; 44(8):615-33. PubMed ID: 11108784
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A High-Performance Magnetic Shield with MnZn Ferrite and Mu-Metal Film Combination for Atomic Sensors.
    Fang X; Ma D; Sun B; Xu X; Quan W; Xiao Z; Zhai Y
    Materials (Basel); 2022 Sep; 15(19):. PubMed ID: 36234022
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A d.c. magnetic metamaterial.
    Magnus F; Wood B; Moore J; Morrison K; Perkins G; Fyson J; Wiltshire MC; Caplin D; Cohen LF; Pendry JB
    Nat Mater; 2008 Apr; 7(4):295-7. PubMed ID: 18297077
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bifunctional metamaterials with simultaneous and independent manipulation of thermal and electric fields.
    Lan C; Bi K; Fu X; Li B; Zhou J
    Opt Express; 2016 Oct; 24(20):23072-23080. PubMed ID: 27828373
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and validation of a large-format transition edge sensor array magnetic shielding system for space application.
    Bergen A; van Weers HJ; Bruineman C; Dhallé MM; Krooshoop HJ; Ter Brake HJ; Ravensberg K; Jackson BD; Wafelbakker CK
    Rev Sci Instrum; 2016 Oct; 87(10):105109. PubMed ID: 27802721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental demonstration of the magnetic field concentration effect in circuit-based magnetic near-zero index media.
    Chen Y; Guo Z; Wang Y; Chen X; Jiang H; Chen H
    Opt Express; 2020 May; 28(11):17064-17075. PubMed ID: 32549516
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetic metamaterial superlens for increased range wireless power transfer.
    Lipworth G; Ensworth J; Seetharam K; Huang D; Lee JS; Schmalenberg P; Nomura T; Reynolds MS; Smith DR; Urzhumov Y
    Sci Rep; 2014 Jan; 4():3642. PubMed ID: 24407490
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wide-angle transmissions of electromagnetic fields through the sandwiched transparent epsilon-near-zero metamaterial screen.
    Yang R; Yang P; Chen Y; Li J; Lei Z
    Opt Lett; 2018 Jan; 43(1):5-8. PubMed ID: 29328227
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wave-matter interactions in epsilon-and-mu-near-zero structures.
    Mahmoud AM; Engheta N
    Nat Commun; 2014 Dec; 5():5638. PubMed ID: 25476550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. All-angle collimation of incident light in μ-near-zero metamaterials.
    Fedorov VY; Nakajima T
    Opt Express; 2013 Nov; 21(23):27789-95. PubMed ID: 24514294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.