BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 26234946)

  • 1. Identification of a DYRK1A Inhibitor that Induces Degradation of the Target Kinase using Co-chaperone CDC37 fused with Luciferase nanoKAZ.
    Sonamoto R; Kii I; Koike Y; Sumida Y; Kato-Sumida T; Okuno Y; Hosoya T; Hagiwara M
    Sci Rep; 2015 Aug; 5():12728. PubMed ID: 26234946
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression and purification of recombinant NRL-Hsp90α and Cdc37-CRL proteins for in vitro Hsp90/Cdc37 inhibitors screening.
    He J; Niu X; Hu C; Zhang H; Guo Y; Ge Y; Wang G; Jiang Y
    Protein Expr Purif; 2013 Nov; 92(1):119-27. PubMed ID: 24056254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential maturation and chaperone dependence of the paralogous protein kinases DYRK1A and DYRK1B.
    Papenfuss M; Lützow S; Wilms G; Babendreyer A; Flaßhoff M; Kunick C; Becker W
    Sci Rep; 2022 Feb; 12(1):2393. PubMed ID: 35165364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein quality control of DYRK family protein kinases by the Hsp90-Cdc37 molecular chaperone.
    Miyata Y; Nishida E
    Biochim Biophys Acta Mol Cell Res; 2021 Sep; 1868(10):119081. PubMed ID: 34147560
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Specific regulation of noncanonical p38alpha activation by Hsp90-Cdc37 chaperone complex in cardiomyocyte.
    Ota A; Zhang J; Ping P; Han J; Wang Y
    Circ Res; 2010 Apr; 106(8):1404-12. PubMed ID: 20299663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular chaperone complexes with antagonizing activities regulate stability and activity of the tumor suppressor LKB1.
    Gaude H; Aznar N; Delay A; Bres A; Buchet-Poyau K; Caillat C; Vigouroux A; Rogon C; Woods A; Vanacker JM; Höhfeld J; Perret C; Meyer P; Billaud M; Forcet C
    Oncogene; 2012 Mar; 31(12):1582-91. PubMed ID: 21860411
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Medium-Throughput Detection of Hsp90/Cdc37 Protein-Protein Interaction Inhibitors Using a Split
    Siddiqui FA; Parkkola H; Manoharan GB; Abankwa D
    SLAS Discov; 2020 Feb; 25(2):195-206. PubMed ID: 31662027
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting CDC37: an alternative, kinase-directed strategy for disruption of oncogenic chaperoning.
    Smith JR; Workman P
    Cell Cycle; 2009 Feb; 8(3):362-72. PubMed ID: 19177013
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Split Renilla luciferase protein fragment-assisted complementation (SRL-PFAC) to characterize Hsp90-Cdc37 complex and identify critical residues in protein/protein interactions.
    Jiang Y; Bernard D; Yu Y; Xie Y; Zhang T; Li Y; Burnett JP; Fu X; Wang S; Sun D
    J Biol Chem; 2010 Jul; 285(27):21023-36. PubMed ID: 20413594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heat-shock protein 90 and Cdc37 interact with LKB1 and regulate its stability.
    Boudeau J; Deak M; Lawlor MA; Morrice NA; Alessi DR
    Biochem J; 2003 Mar; 370(Pt 3):849-57. PubMed ID: 12489981
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic tyrosine phosphorylation modulates cycling of the HSP90-P50(CDC37)-AHA1 chaperone machine.
    Xu W; Mollapour M; Prodromou C; Wang S; Scroggins BT; Palchick Z; Beebe K; Siderius M; Lee MJ; Couvillon A; Trepel JB; Miyata Y; Matts R; Neckers L
    Mol Cell; 2012 Aug; 47(3):434-43. PubMed ID: 22727666
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ATP-competitive inhibitors block protein kinase recruitment to the Hsp90-Cdc37 system.
    Polier S; Samant RS; Clarke PA; Workman P; Prodromou C; Pearl LH
    Nat Chem Biol; 2013 May; 9(5):307-12. PubMed ID: 23502424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hsp90·Cdc37 Complexes with Protein Kinases Form Cooperatively with Multiple Distinct Interaction Sites.
    Eckl JM; Scherr MJ; Freiburger L; Daake MA; Sattler M; Richter K
    J Biol Chem; 2015 Dec; 290(52):30843-54. PubMed ID: 26511315
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cdc37 (cell division cycle 37) restricts Hsp90 (heat shock protein 90) motility by interaction with N-terminal and middle domain binding sites.
    Eckl JM; Rutz DA; Haslbeck V; Zierer BK; Reinstein J; Richter K
    J Biol Chem; 2013 May; 288(22):16032-42. PubMed ID: 23569206
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential Regulation of G1 CDK Complexes by the Hsp90-Cdc37 Chaperone System.
    Hallett ST; Pastok MW; Morgan RML; Wittner A; Blundell KLIM; Felletar I; Wedge SR; Prodromou C; Noble MEM; Pearl LH; Endicott JA
    Cell Rep; 2017 Oct; 21(5):1386-1398. PubMed ID: 29091774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The CDC37-HSP90 chaperone complex co-translationally degrades the nascent kinase-dead mutant of HIPK2.
    Müller JP; Klempnauer KH
    FEBS Lett; 2021 Jun; 595(11):1559-1568. PubMed ID: 33786814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cdc37 as a Co-chaperone to Hsp90.
    Prince TL; Lang BJ; Okusha Y; Eguchi T; Calderwood SK
    Subcell Biochem; 2023; 101():141-158. PubMed ID: 36520306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. p50(cdc37) acting in concert with Hsp90 is required for Raf-1 function.
    Grammatikakis N; Lin JH; Grammatikakis A; Tsichlis PN; Cochran BH
    Mol Cell Biol; 1999 Mar; 19(3):1661-72. PubMed ID: 10022854
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective inhibition of the kinase DYRK1A by targeting its folding process.
    Kii I; Sumida Y; Goto T; Sonamoto R; Okuno Y; Yoshida S; Kato-Sumida T; Koike Y; Abe M; Nonaka Y; Ikura T; Ito N; Shibuya H; Hosoya T; Hagiwara M
    Nat Commun; 2016 Apr; 7():11391. PubMed ID: 27102360
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A positive feedback loop between protein kinase CKII and Cdc37 promotes the activity of multiple protein kinases.
    Bandhakavi S; McCann RO; Hanna DE; Glover CV
    J Biol Chem; 2003 Jan; 278(5):2829-36. PubMed ID: 12435747
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.