BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 26235074)

  • 1. Next Generation Sequencing in Alzheimer's Disease.
    Bertram L
    Methods Mol Biol; 2016; 1303():281-97. PubMed ID: 26235074
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Opportunities and challenges of whole-genome and -exome sequencing.
    Petersen BS; Fredrich B; Hoeppner MP; Ellinghaus D; Franke A
    BMC Genet; 2017 Feb; 18(1):14. PubMed ID: 28193154
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genomics of Alzheimer's disease: Value of high-throughput genomic technologies to dissect its etiology.
    Tosto G; Reitz C
    Mol Cell Probes; 2016 Dec; 30(6):397-403. PubMed ID: 27618776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pooled-DNA Sequencing for Elucidating New Genomic Risk Factors, Rare Variants Underlying Alzheimer's Disease.
    Jin SC; Benitez BA; Deming Y; Cruchaga C
    Methods Mol Biol; 2016; 1303():299-314. PubMed ID: 26235075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exome versus transcriptome sequencing in identifying coding region variants.
    Ku CS; Wu M; Cooper DN; Naidoo N; Pawitan Y; Pang B; Iacopetta B; Soong R
    Expert Rev Mol Diagn; 2012 Apr; 12(3):241-51. PubMed ID: 22468815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. State of Play in Alzheimer's Disease Genetics.
    Zhu JB; Tan CC; Tan L; Yu JT
    J Alzheimers Dis; 2017; 58(3):631-659. PubMed ID: 28505974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance evaluation of the next-generation sequencing approach for molecular diagnosis of hereditary hearing loss.
    Sivakumaran TA; Husami A; Kissell D; Zhang W; Keddache M; Black AP; Tinkle BT; Greinwald JH; Zhang K
    Otolaryngol Head Neck Surg; 2013 Jun; 148(6):1007-16. PubMed ID: 23525850
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Personal genomics for Alzheimer's disease].
    Kuwano R; Hara N
    Brain Nerve; 2013 Mar; 65(3):235-46. PubMed ID: 23475515
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Progress in detecting genetic alterations and their association with human disease.
    Schwartz CE; Chen CF
    J Mol Biol; 2013 Nov; 425(21):3914-8. PubMed ID: 23876707
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Whole-exome sequencing and its impact in hereditary hearing loss.
    Atik T; Bademci G; Diaz-Horta O; Blanton SH; Tekin M
    Genet Res (Camb); 2015 Mar; 97():e4. PubMed ID: 25825321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Developing genome and exome sequencing for candidate gene identification in inherited disorders: an integrated technical and bioinformatics approach.
    Coonrod EM; Durtschi JD; Margraf RL; Voelkerding KV
    Arch Pathol Lab Med; 2013 Mar; 137(3):415-33. PubMed ID: 22770468
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Genetic Analysis of Alzheimer's Disease: The Impact of Rare Variants and Their Significance].
    Miyashita A; Liu L; Hara N
    Brain Nerve; 2019 Oct; 71(10):1071-1079. PubMed ID: 31588051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Archived neonatal dried blood spot samples can be used for accurate whole genome and exome-targeted next-generation sequencing.
    Hollegaard MV; Grauholm J; Nielsen R; Grove J; Mandrup S; Hougaard DM
    Mol Genet Metab; 2013; 110(1-2):65-72. PubMed ID: 23830478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Getting started in mapping-by-sequencing.
    Candela H; Casanova-Sáez R; Micol JL
    J Integr Plant Biol; 2015 Jul; 57(7):606-12. PubMed ID: 25359627
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of high-throughput sequencing for studying genomic variations in congenital heart disease.
    Dorn C; Grunert M; Sperling SR
    Brief Funct Genomics; 2014 Jan; 13(1):51-65. PubMed ID: 24095982
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Genome sequencing and personalized medicine: perspectives and limitations].
    Le Gall JY; Debré P;
    Bull Acad Natl Med; 2014 Jan; 198(1):101-17. PubMed ID: 26259290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Utility of next-generation sequencing technologies for the efficient genetic resolution of haematological disorders.
    Zhang J; Barbaro P; Guo Y; Alodaib A; Li J; Gold W; Adès L; Keating BJ; Xu X; Teo J; Hakonarson H; Christodoulou J
    Clin Genet; 2016 Feb; 89(2):163-72. PubMed ID: 25703294
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contribution of high-throughput DNA sequencing to the study of primary immunodeficiencies.
    Picard C; Fischer A
    Eur J Immunol; 2014 Oct; 44(10):2854-61. PubMed ID: 25154746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Next-generation sequencing technologies and their impact on microbial genomics.
    Forde BM; O'Toole PW
    Brief Funct Genomics; 2013 Sep; 12(5):440-53. PubMed ID: 23314033
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of Next Generation Sequencing (NGS) technologies for the genome-wide detection of transposition.
    Elbaidouri M; Chaparro C; Panaud O
    Methods Mol Biol; 2013; 1057():265-74. PubMed ID: 23918435
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.