These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
262 related articles for article (PubMed ID: 26235187)
21. Development of liquid-lithium film jet-flow for the target of (7)Li(p,n)(7)Be reactions for BNCT. Kobayashi T; Miura K; Hayashizaki N; Aritomi M Appl Radiat Isot; 2014 Jun; 88():198-202. PubMed ID: 24412425 [TBL] [Abstract][Full Text] [Related]
22. A simulation study on beam property of Tanaka K; Kajimoto T; Sakurai Y; Bengua G; Endo S Appl Radiat Isot; 2020 Oct; 164():109227. PubMed ID: 32819498 [TBL] [Abstract][Full Text] [Related]
23. Characteristics of BDE dependent on 10B concentration for accelerator-based BNCT using near-threshold 7Li(p,n)7Be direct neutrons. Tanaka K; Kobayashi T; Bengua G; Nakagawa Y; Endo S; Hoshi M Appl Radiat Isot; 2004 Nov; 61(5):875-9. PubMed ID: 15308161 [TBL] [Abstract][Full Text] [Related]
24. Dosimetric performance evaluation regarding proton beam incident angles of a lithium-based AB-BNCT design. Lee PY; Liu YH; Jiang SH Radiat Prot Dosimetry; 2014 Oct; 161(1-4):403-9. PubMed ID: 24493784 [TBL] [Abstract][Full Text] [Related]
25. Evaluation of useful neutron flux for accelerator boron neutron capture therapy using the 7Li(p,n) reaction. Zimin S; Allen BJ Australas Phys Eng Sci Med; 1998 Dec; 21(4):193-9. PubMed ID: 10050350 [TBL] [Abstract][Full Text] [Related]
26. Evaluation of the characteristics of boron-dose enhancer (BDE) materials for BNCT using near threshold 7Li(p,n)7Be direct neutrons. Bengua G; Kobayashi T; Tanaka K; Nakagawa Y Phys Med Biol; 2004 Mar; 49(5):819-31. PubMed ID: 15070205 [TBL] [Abstract][Full Text] [Related]
27. Dependence of neutrons generated by Nakamura S; Igaki H; Okamoto H; Wakita A; Ito M; Imamichi S; Nishioka S; Iijima K; Nakayama H; Takemori M; Kobayashi K; Abe Y; Okuma K; Takahashi K; Inaba K; Murakami N; Nakayama Y; Nishio T; Masutani M; Itami J Phys Med; 2019 Feb; 58():121-130. PubMed ID: 30824143 [TBL] [Abstract][Full Text] [Related]
29. Compounds of 6Li and natural Li for EPR dosimetry in photon/neutron mixed radiation fields. Lund E; Gustafsson H; Danilczuk M; Sastry MD; Lund A Spectrochim Acta A Mol Biomol Spectrosc; 2004 May; 60(6):1319-26. PubMed ID: 15134730 [TBL] [Abstract][Full Text] [Related]
30. Secondary photon fields produced in accelerator-based sources for neutron generation. Agosteo S; Cesana A; Garlati L; Pola A; Terrani M Radiat Prot Dosimetry; 2005; 115(1-4):363-8. PubMed ID: 16381747 [TBL] [Abstract][Full Text] [Related]
31. Cell survival measurements in an argon, aluminium and sulphur filtered neutron beam: a comparison with 24 keV neutrons and relevance to boron neutron capture therapy. Mill AJ; Morgan GR; Newman SM Br J Radiol; 1994 Oct; 67(802):1008-16. PubMed ID: 8000825 [TBL] [Abstract][Full Text] [Related]
32. On the eptihermal neutron energy limit for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT): Study and impact of new energy limits. Hervé M; Sauzet N; Santos D Phys Med; 2021 Aug; 88():148-157. PubMed ID: 34265549 [TBL] [Abstract][Full Text] [Related]
33. Characterization of moderator assembly dimension for accelerator boron neutron capture therapy of brain tumors using 7Li(p, n) neutrons at proton energy of 2.5 MeV. Tanaka K; Kobayashi T; Bengua G; Nakagawa Y; Endo S; Hoshi M Med Phys; 2006 Jun; 33(6):1688-94. PubMed ID: 16872076 [TBL] [Abstract][Full Text] [Related]
34. Thick beryllium target as an epithermal neutron source for neutron capture therapy. Wang CK; Moore BR Med Phys; 1994 Oct; 21(10):1633-8. PubMed ID: 7869996 [TBL] [Abstract][Full Text] [Related]
35. Development of beryllium-based neutron target system with three-layer structure for accelerator-based neutron source for boron neutron capture therapy. Kumada H; Kurihara T; Yoshioka M; Kobayashi H; Matsumoto H; Sugano T; Sakurai H; Sakae T; Matsumura A Appl Radiat Isot; 2015 Dec; 106():78-83. PubMed ID: 26260448 [TBL] [Abstract][Full Text] [Related]
36. A study of gamma-ray and neutron radiation in the interaction of a 2 MeV proton beam with various materials. Kasatov D; Makarov A; Shchudlo I; Taskaev S Appl Radiat Isot; 2015 Dec; 106():38-40. PubMed ID: 26298434 [TBL] [Abstract][Full Text] [Related]
37. What is the best proton energy for accelerator-based BNCT using the 7Li(p,n)7Be reaction? Allen DA; Beynon TD Med Phys; 2000 May; 27(5):1113-8. PubMed ID: 10841417 [TBL] [Abstract][Full Text] [Related]
38. Study of moderator thickness for an accelerator-based neutron irradiation facility for boron neutron capture therapy using the 7Li(p,n) reaction near threshold. Zimin S; Allen BJ Phys Med Biol; 2000 Jan; 45(1):59-67. PubMed ID: 10661583 [TBL] [Abstract][Full Text] [Related]
39. Proposal for determining absolute biological effectiveness of boron neutron capture therapy-the effect of 10B(n,α)7Li dose can be predicted from the nucleocytoplasmic ratio or the cell size. Ono K; Tanaka H; Tamari Y; Watanabe T; Suzuki M; Masunaga SI J Radiat Res; 2019 Jan; 60(1):29-36. PubMed ID: 30395286 [TBL] [Abstract][Full Text] [Related]
40. Microdosimetry of an accelerator based thermal neutron field for Boron Neutron Capture Therapy. Selva A; Bellan L; Bianchi A; Giustiniani G; Colautti P; Fagotti E; Pisent A; Conte V Appl Radiat Isot; 2022 Apr; 182():110144. PubMed ID: 35168037 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]