BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

561 related articles for article (PubMed ID: 26235346)

  • 1. Reprint of: Review of bioactive glass: From Hench to hybrids.
    Jones JR
    Acta Biomater; 2015 Sep; 23 Suppl():S53-82. PubMed ID: 26235346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Review of bioactive glass: from Hench to hybrids.
    Jones JR
    Acta Biomater; 2013 Jan; 9(1):4457-86. PubMed ID: 22922331
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly degradable porous melt-derived bioactive glass foam scaffolds for bone regeneration.
    Nommeots-Nomm A; Labbaf S; Devlin A; Todd N; Geng H; Solanki AK; Tang HM; Perdika P; Pinna A; Ejeian F; Tsigkou O; Lee PD; Esfahani MHN; Mitchell CA; Jones JR
    Acta Biomater; 2017 Jul; 57():449-461. PubMed ID: 28457960
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterizing the hierarchical structures of bioactive sol-gel silicate glass and hybrid scaffolds for bone regeneration.
    Martin RA; Yue S; Hanna JV; Lee PD; Newport RJ; Smith ME; Jones JR
    Philos Trans A Math Phys Eng Sci; 2012 Mar; 370(1963):1422-43. PubMed ID: 22349249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Current Development in Biomaterials-Hydroxyapatite and Bioglass for Applications in Biomedical Field: A Review.
    Filip DG; Surdu VA; Paduraru AV; Andronescu E
    J Funct Biomater; 2022 Nov; 13(4):. PubMed ID: 36412889
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication and characterization of sol-gel derived 45S5 Bioglass®-ceramic scaffolds.
    Chen QZ; Thouas GA
    Acta Biomater; 2011 Oct; 7(10):3616-26. PubMed ID: 21689791
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of 45S5 Bioglass® via a straightforward organic, nitrate-free sol-gel process.
    Rezabeigi E; Wood-Adams PM; Drew RA
    Mater Sci Eng C Mater Biol Appl; 2014 Jul; 40():248-52. PubMed ID: 24857490
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioactive glass scaffolds for bone regeneration and their hierarchical characterisation.
    Jones JR; Lin S; Yue S; Lee PD; Hanna JV; Smith ME; Newport RJ
    Proc Inst Mech Eng H; 2010 Dec; 224(12):1373-87. PubMed ID: 21287826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioactive Glasses and Glass-Ceramics for Healthcare Applications in Bone Regeneration and Tissue Engineering.
    Fernandes HR; Gaddam A; Rebelo A; Brazete D; Stan GE; Ferreira JMF
    Materials (Basel); 2018 Dec; 11(12):. PubMed ID: 30545136
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new sol-gel synthesis of 45S5 bioactive glass using an organic acid as catalyst.
    Faure J; Drevet R; Lemelle A; Ben Jaber N; Tara A; El Btaouri H; Benhayoune H
    Mater Sci Eng C Mater Biol Appl; 2015 Feb; 47():407-12. PubMed ID: 25492213
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Incorporation of 45S5 bioglass via sol-gel in β-TCP scaffolds: Bioactivity and antimicrobial activity evaluation.
    Spirandeli BR; Ribas RG; Amaral SS; Martins EF; Esposito E; Vasconcellos LMR; Campos TMB; Thim GP; Trichês ES
    Mater Sci Eng C Mater Biol Appl; 2021 Dec; 131():112453. PubMed ID: 34857256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D printed mesoporous bioactive glass, bioglass 45S5, and β-TCP scaffolds for regenerative medicine: A comparative in vitro study.
    Pacheco-Vergara MJ; Ricci JL; Mijares D; Bromage TG; Rabieh S; Coelho PG; Witek L
    Biomed Mater Eng; 2023; 34(5):439-458. PubMed ID: 36744331
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time- and concentration-dependent effects of dissolution products of 58S sol-gel bioactive glass on proliferation and differentiation of murine and human osteoblasts.
    Bielby RC; Christodoulou IS; Pryce RS; Radford WJ; Hench LL; Polak JM
    Tissue Eng; 2004; 10(7-8):1018-26. PubMed ID: 15363159
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Osteogenic differentiation of umbilical cord and adipose derived stem cells onto highly porous 45S5 Bioglass®-based scaffolds.
    Detsch R; Alles S; Hum J; Westenberger P; Sieker F; Heusinger D; Kasper C; Boccaccini AR
    J Biomed Mater Res A; 2015 Mar; 103(3):1029-37. PubMed ID: 24853477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioactive Glasses: Frontiers and Challenges.
    Hench LL; Jones JR
    Front Bioeng Biotechnol; 2015; 3():194. PubMed ID: 26649290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sol-gel derived bioactive glasses with low tendency to crystallize: synthesis, post-sintering bioactivity and possible application for the production of porous scaffolds.
    Bellucci D; Sola A; Salvatori R; Anesi A; Chiarini L; Cannillo V
    Mater Sci Eng C Mater Biol Appl; 2014 Oct; 43():573-86. PubMed ID: 25175252
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioactive glasses with improved processing. Part 1. Thermal properties, ion release and apatite formation.
    Groh D; Döhler F; Brauer DS
    Acta Biomater; 2014 Oct; 10(10):4465-73. PubMed ID: 24880003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication and in vitro characterization of bioactive glass composite scaffolds for bone regeneration.
    Poh PS; Hutmacher DW; Stevens MM; Woodruff MA
    Biofabrication; 2013 Dec; 5(4):045005. PubMed ID: 24192136
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zinc- and Fluoride-Releasing Bioactive Glass as a Novel Bone Substitute.
    Kondo T; Otake K; Kakinuma H; Sato Y; Ambo S; Egusa H
    J Dent Res; 2024 May; 103(5):526-535. PubMed ID: 38581240
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new sol-gel process for producing Na(2)O-containing bioactive glass ceramics.
    Chen QZ; Li Y; Jin LY; Quinn JM; Komesaroff PA
    Acta Biomater; 2010 Oct; 6(10):4143-53. PubMed ID: 20447473
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.