BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 26235642)

  • 21. pH and reduction dual-bioresponsive polymersomes for efficient intracellular protein delivery.
    Zhang J; Wu L; Meng F; Wang Z; Deng C; Liu H; Zhong Z
    Langmuir; 2012 Jan; 28(4):2056-65. PubMed ID: 22188099
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Protein encapsulation and release from PEO-b-polyphosphoester templated calcium carbonate particles.
    Ergul Yilmaz Z; Cordonnier T; Debuigne A; Calvignac B; Jerome C; Boury F
    Int J Pharm; 2016 Nov; 513(1-2):130-137. PubMed ID: 27601335
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Vesicle-to-cytosol transport of disulfide-linked cargo mediated by an amphipathic cell-penetrating peptide.
    Kenien R; Shen WC; Zaro JL
    J Drug Target; 2012 Nov; 20(9):793-800. PubMed ID: 22994388
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Semi-interpenetrated, dendritic, dual-responsive nanogels with cytochrome c corona induce controlled apoptosis in HeLa cells.
    Miceli E; Wedepohl S; Osorio Blanco ER; Rimondino GN; Martinelli M; Strumia M; Molina M; Kar M; Calderón M
    Eur J Pharm Biopharm; 2018 Sep; 130():115-122. PubMed ID: 29932977
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multi-stage, charge conversional, stimuli-responsive nanogels for therapeutic protein delivery.
    Zhang X; Zhang K; Haag R
    Biomater Sci; 2015 Nov; 3(11):1487-96. PubMed ID: 26288853
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A preloaded amorphous calcium carbonate/doxorubicin@silica nanoreactor for pH-responsive delivery of an anticancer drug.
    Zhao Y; Luo Z; Li M; Qu Q; Ma X; Yu SH; Zhao Y
    Angew Chem Int Ed Engl; 2015 Jan; 54(3):919-22. PubMed ID: 25422068
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Thermal and pH responsive polymer-tethered multifunctional magnetic nanoparticles for targeted delivery of anticancer drug.
    Sahoo B; Devi KS; Banerjee R; Maiti TK; Pramanik P; Dhara D
    ACS Appl Mater Interfaces; 2013 May; 5(9):3884-93. PubMed ID: 23551195
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Application of Box-Behnken design to prepare gentamicin-loaded calcium carbonate nanoparticles.
    Maleki Dizaj S; Lotfipour F; Barzegar-Jalali M; Zarrintan MH; Adibkia K
    Artif Cells Nanomed Biotechnol; 2016 Sep; 44(6):1475-81. PubMed ID: 25950955
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Polypyrrole nanoparticles for tunable, pH-sensitive and sustained drug release.
    Samanta D; Meiser JL; Zare RN
    Nanoscale; 2015 Jun; 7(21):9497-504. PubMed ID: 25931037
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Probing the conformational changes and peroxidase-like activity of cytochrome c upon interaction with iron nanoparticles.
    Jafari Azad V; Kasravi S; Alizadeh Zeinabad H; Memar Bashi Aval M; Saboury AA; Rahimi A; Falahati M
    J Biomol Struct Dyn; 2017 Sep; 35(12):2565-2577. PubMed ID: 27632558
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Regulated Drug Release Abilities of Calcium Carbonate-Gelatin Hybrid Nanocarriers Fabricated via a Self-Organizational Process.
    Murai K; Kurumisawa K; Nomura Y; Matsumoto M
    ChemMedChem; 2017 Oct; 12(19):1595-1599. PubMed ID: 28741844
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Protamine sulfate-calcium carbonate-plasmid DNA ternary nanoparticles for efficient gene delivery.
    Wang CQ; Wu JL; Zhuo RX; Cheng SX
    Mol Biosyst; 2014 Mar; 10(3):672-8. PubMed ID: 24442276
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Poly (vinylsulfonic acid) assisted synthesis of aqueous solution stable vaterite calcium carbonate nanoparticles.
    Nagaraja AT; Pradhan S; McShane MJ
    J Colloid Interface Sci; 2014 Mar; 418():366-72. PubMed ID: 24461857
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A novel upconversion@polydopamine core@shell nanoparticle based aptameric biosensor for biosensing and imaging of cytochrome c inside living cells.
    Ma L; Liu F; Lei Z; Wang Z
    Biosens Bioelectron; 2017 Jan; 87():638-645. PubMed ID: 27619527
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Intracellular delivery of cytochrome c by galactosylated albumin to hepatocarcinoma cells.
    Yeh TH; Wu FL; Shen LJ
    J Drug Target; 2014 Jul; 22(6):528-35. PubMed ID: 24731058
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Graft copolymer nanoparticles with pH and reduction dual-induced disassemblable property for enhanced intracellular curcumin release.
    Zhao J; Liu J; Xu S; Zhou J; Han S; Deng L; Zhang J; Liu J; Meng A; Dong A
    ACS Appl Mater Interfaces; 2013 Dec; 5(24):13216-26. PubMed ID: 24313273
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Preparation of end-capped pH-sensitive mesoporous silica nanocarriers for on-demand drug delivery.
    Moreira AF; Gaspar VM; Costa EC; de Melo-Diogo D; Machado P; Paquete CM; Correia IJ
    Eur J Pharm Biopharm; 2014 Nov; 88(3):1012-25. PubMed ID: 25229810
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Folate-decorated hydrophilic three-arm star-block terpolymer as a novel nanovehicle for targeted co-delivery of doxorubicin and Bcl-2 siRNA in breast cancer therapy.
    Qian J; Xu M; Suo A; Xu W; Liu T; Liu X; Yao Y; Wang H
    Acta Biomater; 2015 Mar; 15():102-16. PubMed ID: 25545322
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Activation of caspase-dependent apoptosis by intracellular delivery of Cytochrome c-based nanoparticles.
    Morales-Cruz M; Figueroa CM; González-Robles T; Delgado Y; Molina A; Méndez J; Morales M; Griebenow K
    J Nanobiotechnology; 2014 Sep; 12():33. PubMed ID: 25179308
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Alkaline transition of horse heart cytochrome c in the presence of ZnO nanoparticles.
    Simšíková M; Antalík M
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Jan; 101():410-4. PubMed ID: 23174455
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.