BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 26235707)

  • 1. Taurine Boosts Cellular Uptake of Small D-Peptides for Enzyme-Instructed Intracellular Molecular Self-Assembly.
    Zhou J; Du X; Li J; Yamagata N; Xu B
    J Am Chem Soc; 2015 Aug; 137(32):10040-3. PubMed ID: 26235707
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellular Uptake of A Taurine-Modified, Ester Bond-Decorated D-Peptide Derivative via Dynamin-Based Endocytosis and Macropinocytosis.
    Zhou J; Du X; Berciu C; Del Signore SJ; Chen X; Yamagata N; Rodal AA; Nicastro D; Xu B
    Mol Ther; 2018 Feb; 26(2):648-658. PubMed ID: 29396265
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hybrid Cyclic-Linear Cell-Penetrating Peptides Containing Alternative Positively Charged and Hydrophobic Residues as Molecular Transporters.
    Khayyatnejad Shoushtari S; Zoghebi K; Sajid MI; Tiwari RK; Parang K
    Mol Pharm; 2021 Oct; 18(10):3909-3919. PubMed ID: 34491768
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An l- to d-Amino Acid Conversion in an Endosomolytic Analog of the Cell-penetrating Peptide TAT Influences Proteolytic Stability, Endocytic Uptake, and Endosomal Escape.
    Najjar K; Erazo-Oliveras A; Brock DJ; Wang TY; Pellois JP
    J Biol Chem; 2017 Jan; 292(3):847-861. PubMed ID: 27923812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of endocytosis on the uptake kinetics of luciferin-conjugated cell-penetrating peptides.
    Mäger I; Langel K; Lehto T; Eiríksdóttir E; Langel U
    Biochim Biophys Acta; 2012 Mar; 1818(3):502-11. PubMed ID: 22155257
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of ribonuclease A endocytosis: analogies to cell-penetrating peptides.
    Chao TY; Raines RT
    Biochemistry; 2011 Oct; 50(39):8374-82. PubMed ID: 21827164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced cellular uptake of albumin-based lyophilisomes when functionalized with cell-penetrating peptide TAT in HeLa cells.
    van Bracht E; Versteegden LR; Stolle S; Verdurmen WP; Woestenenk R; Raavé R; Hafmans T; Oosterwijk E; Brock R; van Kuppevelt TH; Daamen WF
    PLoS One; 2014; 9(11):e110813. PubMed ID: 25369131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural parameters modulating the cellular uptake of disulfide-rich cyclic cell-penetrating peptides: MCoTI-II and SFTI-1.
    D'Souza C; Henriques ST; Wang CK; Craik DJ
    Eur J Med Chem; 2014 Dec; 88():10-8. PubMed ID: 24985034
    [TBL] [Abstract][Full Text] [Related]  

  • 9. siRNA and pharmacological inhibition of endocytic pathways to characterize the differential role of macropinocytosis and the actin cytoskeleton on cellular uptake of dextran and cationic cell penetrating peptides octaarginine (R8) and HIV-Tat.
    Al Soraj M; He L; Peynshaert K; Cousaert J; Vercauteren D; Braeckmans K; De Smedt SC; Jones AT
    J Control Release; 2012 Jul; 161(1):132-41. PubMed ID: 22465675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of the properties of short peptides conjugated with cell-penetrating peptides on their internalization into cells.
    Matsumoto R; Okochi M; Shimizu K; Kanie K; Kato R; Honda H
    Sci Rep; 2015 Aug; 5():12884. PubMed ID: 26256261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell-penetrating antimicrobial peptides - prospectives for targeting intracellular infections.
    Bahnsen JS; Franzyk H; Sayers EJ; Jones AT; Nielsen HM
    Pharm Res; 2015 May; 32(5):1546-56. PubMed ID: 25777610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Constrained and UV-activatable cell-penetrating peptides for intracellular delivery of liposomes.
    Hansen MB; van Gaal E; Minten I; Storm G; van Hest JC; Löwik DW
    J Control Release; 2012 Nov; 164(1):87-94. PubMed ID: 23085152
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Syndiotactic peptides for targeted delivery.
    Jerath G; Goyal R; Trivedi V; Santhoshkumar TR; Ramakrishnan V
    Acta Biomater; 2019 Mar; 87():130-139. PubMed ID: 30665017
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced intracellular translocation and biodistribution of gold nanoparticles functionalized with a cell-penetrating peptide (VG-21) from vesicular stomatitis virus.
    Tiwari PM; Eroglu E; Bawage SS; Vig K; Miller ME; Pillai S; Dennis VA; Singh SR
    Biomaterials; 2014 Nov; 35(35):9484-94. PubMed ID: 25154664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CXCR4 stimulates macropinocytosis: implications for cellular uptake of arginine-rich cell-penetrating peptides and HIV.
    Tanaka G; Nakase I; Fukuda Y; Masuda R; Oishi S; Shimura K; Kawaguchi Y; Takatani-Nakase T; Langel U; Gräslund A; Okawa K; Matsuoka M; Fujii N; Hatanaka Y; Futaki S
    Chem Biol; 2012 Nov; 19(11):1437-46. PubMed ID: 23177198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discovery of a non-cationic cell penetrating peptide derived from membrane-interacting human proteins and its potential as a protein delivery carrier.
    Young Kim H; Young Yum S; Jang G; Ahn DR
    Sci Rep; 2015 Jun; 5():11719. PubMed ID: 26114640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance of cell-penetrating peptide-linked polymers physically mixed with poorly membrane-permeable molecules on cell membranes.
    Sakuma S; Suita M; Yamamoto T; Masaoka Y; Kataoka M; Yamashita S; Nakajima N; Shinkai N; Yamauchi H; Hiwatari K; Hashizume A; Tachikawa H; Kimura R; Ishimaru Y; Kasai A; Maeda S
    Eur J Pharm Biopharm; 2012 May; 81(1):64-73. PubMed ID: 22306700
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved antibacterial activity of a marine peptide-N2 against intracellular Salmonella typhimurium by conjugating with cell-penetrating peptides-bLFcin
    Li Z; Wang X; Teng D; Mao R; Hao Y; Yang N; Chen H; Wang X; Wang J
    Eur J Med Chem; 2018 Feb; 145():263-272. PubMed ID: 29329001
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uptake Mechanism of Cell-Penetrating Peptides.
    Gestin M; Dowaidar M; Langel Ü
    Adv Exp Med Biol; 2017; 1030():255-264. PubMed ID: 29081057
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct cytosolic delivery of cargoes in vivo by a chimera consisting of D- and L-arginine residues.
    Ma Y; Gong C; Ma Y; Fan F; Luo M; Yang F; Zhang YH
    J Control Release; 2012 Sep; 162(2):286-94. PubMed ID: 22824782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.