These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
318 related articles for article (PubMed ID: 26235797)
1. Crystallographic transformation of limestone during calcination under CO2. Valverde JM; Medina S Phys Chem Chem Phys; 2015 Sep; 17(34):21912-26. PubMed ID: 26235797 [TBL] [Abstract][Full Text] [Related]
2. Thermal decomposition of dolomite under CO2: insights from TGA and in situ XRD analysis. Valverde JM; Perejon A; Medina S; Perez-Maqueda LA Phys Chem Chem Phys; 2015 Nov; 17(44):30162-76. PubMed ID: 26506285 [TBL] [Abstract][Full Text] [Related]
3. Relevant influence of limestone crystallinity on CO₂ capture in the Ca-looping technology at realistic calcination conditions. Valverde JM; Sanchez-Jimenez PE; Perez-Maqueda LA Environ Sci Technol; 2014 Aug; 48(16):9882-9. PubMed ID: 25029532 [TBL] [Abstract][Full Text] [Related]
4. CaO-based CO2 sorbents: from fundamentals to the development of new, highly effective materials. Kierzkowska AM; Pacciani R; Müller CR ChemSusChem; 2013 Jul; 6(7):1130-48. PubMed ID: 23821467 [TBL] [Abstract][Full Text] [Related]
5. Limestone calcination under calcium-looping conditions for CO Valverde JM; Medina S Phys Chem Chem Phys; 2017 Mar; 19(11):7587-7596. PubMed ID: 28252141 [TBL] [Abstract][Full Text] [Related]
6. Effect of compression molding of CaCO Mahmoud MS; Al-Aufi R; Al-Saidi A; Al-Samahi S; Al-Bulushi R; Rajan G; Abdelmouleh M; Jedidi I Environ Sci Pollut Res Int; 2023 Nov; 30(51):110981-110994. PubMed ID: 37798519 [TBL] [Abstract][Full Text] [Related]
7. Influence of high-temperature steam on the reactivity of CaO sorbent for CO₂ capture. Donat F; Florin NH; Anthony EJ; Fennell PS Environ Sci Technol; 2012 Jan; 46(2):1262-9. PubMed ID: 22191682 [TBL] [Abstract][Full Text] [Related]
8. Effect of repeated steam hydration reactivation on CaO-based sorbents for CO2 capture. Materić BV; Sheppard C; Smedley SI Environ Sci Technol; 2010 Dec; 44(24):9496-501. PubMed ID: 21114320 [TBL] [Abstract][Full Text] [Related]
9. The mechanism of vapor phase hydration of calcium oxide: implications for CO2 capture. Kudłacz K; Rodriguez-Navarro C Environ Sci Technol; 2014 Oct; 48(20):12411-8. PubMed ID: 25233236 [TBL] [Abstract][Full Text] [Related]
10. Acoustic streaming enhances the Multicyclic CO2 capture of natural limestone at Ca-looping conditions. Valverde JM; Ebri JM; Quintanilla MA Environ Sci Technol; 2013 Aug; 47(16):9538-44. PubMed ID: 23883159 [TBL] [Abstract][Full Text] [Related]
11. Effect of dolomite decomposition under CO2 on its multicycle CO2 capture behaviour under calcium looping conditions. de la Calle Martos A; Valverde JM; Sanchez-Jimenez PE; Perejón A; García-Garrido C; Perez-Maqueda LA Phys Chem Chem Phys; 2016 Jun; 18(24):16325-36. PubMed ID: 27253328 [TBL] [Abstract][Full Text] [Related]
13. Effect of pelletization and addition of steam on the cyclic performance of carbon-templated, CaO-based CO2 sorbents. Broda M; Manovic V; Anthony EJ; Müller CR Environ Sci Technol; 2014 May; 48(9):5322-8. PubMed ID: 24678727 [TBL] [Abstract][Full Text] [Related]
14. Synthesis of highly efficient CaO-based, self-stabilizing CO2 sorbents via structure-reforming of steel slag. Tian S; Jiang J; Yan F; Li K; Chen X Environ Sci Technol; 2015 Jun; 49(12):7464-72. PubMed ID: 25961319 [TBL] [Abstract][Full Text] [Related]
15. Operation of a 25 KWth Calcium Looping Pilot-plant with High Oxygen Concentrations in the Calciner. Erans M; Jeremias M; Manovic V; Anthony EJ J Vis Exp; 2017 Oct; (128):. PubMed ID: 29155774 [TBL] [Abstract][Full Text] [Related]
16. SO2 retention by reactivated CaO-based sorbent from multiple CO2 capture cycles. Manovic V; Anthony EJ Environ Sci Technol; 2007 Jun; 41(12):4435-40. PubMed ID: 17626448 [TBL] [Abstract][Full Text] [Related]
18. Effect of Steam on Carbonation of CaO in Ca-Looping. Bai R; Li N; Liu Q; Chen S; Liu Q; Zhou X Molecules; 2023 Jun; 28(13):. PubMed ID: 37446572 [TBL] [Abstract][Full Text] [Related]
19. Tailor-Made Core-Shell CaO/TiO2-Al2O3 Architecture as a High-Capacity and Long-Life CO2 Sorbent. Peng W; Xu Z; Luo C; Zhao H Environ Sci Technol; 2015 Jul; 49(13):8237-45. PubMed ID: 26047026 [TBL] [Abstract][Full Text] [Related]
20. Mechanical activation of CaO-based adsorbents for CO(2) capture. Sayyah M; Lu Y; Masel RI; Suslick KS ChemSusChem; 2013 Jan; 6(1):193-8. PubMed ID: 23132751 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]