These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 26235886)

  • 1. Evidence for the existence of Li2S2 clusters in lithium-sulfur batteries: ab initio Raman spectroscopy simulation.
    Partovi-Azar P; Kühne TD; Kaghazchi P
    Phys Chem Chem Phys; 2015 Sep; 17(34):22009-14. PubMed ID: 26235886
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of New Phase and Electrochemical Properties of Li
    Pan Y; Guan WM
    Inorg Chem; 2018 Jun; 57(11):6617-6623. PubMed ID: 29756769
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast, reversible lithium storage with a sulfur/long-chain-polysulfide redox couple.
    Su YS; Fu Y; Guo B; Dai S; Manthiram A
    Chemistry; 2013 Jun; 19(26):8621-6. PubMed ID: 23670897
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structures and bonding properties of lithium polysulfide clusters LiS
    Long ZC; Wei ZY; Liu KW; Li XL; Xu XL; Xu HG; Zheng WJ
    Phys Chem Chem Phys; 2023 Apr; 25(15):10495-10503. PubMed ID: 36987631
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Li2S Film Formation on Lithium Anode Surface of Li-S batteries.
    Liu Z; Bertolini S; Balbuena PB; Mukherjee PP
    ACS Appl Mater Interfaces; 2016 Feb; 8(7):4700-8. PubMed ID: 26836249
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Revealing Charge Transport Mechanisms in Li
    Liu Z; Balbuena PB; Mukherjee PP
    J Phys Chem Lett; 2017 Apr; 8(7):1324-1330. PubMed ID: 28264563
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stabilized Lithium-Metal Surface in a Polysulfide-Rich Environment of Lithium-Sulfur Batteries.
    Zu C; Manthiram A
    J Phys Chem Lett; 2014 Aug; 5(15):2522-7. PubMed ID: 26277939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Critical Role of Anion Donicity in Li
    Yang B; Jiang H; Zhou Y; Liang Z; Zhao T; Lu YC
    ACS Appl Mater Interfaces; 2019 Jul; 11(29):25940-25948. PubMed ID: 31246006
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expediting the Conversion of Li
    Jin Z; Lin T; Jia H; Liu B; Zhang Q; Li L; Zhang L; Su ZM; Wang C
    ACS Nano; 2021 Apr; 15(4):7318-7327. PubMed ID: 33784808
    [TBL] [Abstract][Full Text] [Related]  

  • 10. "Wane and wax" strategy: Enhanced evolution kinetics of liquid phase Li
    Liu X; Guo Q; Li Y; Ma Y; Ma X; Liu P; Duan D; Zhang Z; Zhou X; Liu S
    J Colloid Interface Sci; 2023 Nov; 649():481-491. PubMed ID: 37356149
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Manipulating Li
    Kim JT; Rao A; Nie HY; Hu Y; Li W; Zhao F; Deng S; Hao X; Fu J; Luo J; Duan H; Wang C; Singh CV; Sun X
    Nat Commun; 2023 Oct; 14(1):6404. PubMed ID: 37828044
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unravel the Catalytic Effect of Two-Dimensional Metal Sulfides on Polysulfide Conversions for Lithium-Sulfur Batteries.
    Wang C; Sun L; Li K; Wu Z; Zhang F; Wang L
    ACS Appl Mater Interfaces; 2020 Sep; 12(39):43560-43567. PubMed ID: 32852199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of Potential-Limiting Steps in Lithium-Sulfur Batteries by Catalyst Synergy.
    Liu L; Zheng Y; Sun Y; Pan H
    Small; 2024 Jun; 20(25):e2309582. PubMed ID: 38225695
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ Raman spectroscopy of sulfur speciation in lithium-sulfur batteries.
    Wu HL; Huff LA; Gewirth AA
    ACS Appl Mater Interfaces; 2015 Jan; 7(3):1709-19. PubMed ID: 25543831
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Establishing reaction networks in the 16-electron sulfur reduction reaction.
    Liu R; Wei Z; Peng L; Zhang L; Zohar A; Schoeppner R; Wang P; Wan C; Zhu D; Liu H; Wang Z; Tolbert SH; Dunn B; Huang Y; Sautet P; Duan X
    Nature; 2024 Feb; 626(7997):98-104. PubMed ID: 38297176
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of the Li-S Battery Mechanism by Real-Time Monitoring of the Changes of Sulfur and Polysulfide Species during the Discharge and Charge.
    Zheng D; Liu D; Harris JB; Ding T; Si J; Andrew S; Qu D; Yang XQ; Qu D
    ACS Appl Mater Interfaces; 2017 Feb; 9(5):4326-4332. PubMed ID: 27612389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accelerating the Rate-Determining Steps of Sulfur Conversion Reaction for Lithium-Sulfur Batteries Working at an Ultrawide Temperature Range.
    Deng DR; Xiong HJ; Luo YL; Yu KM; Weng JC; Li GF; Lei J; Li Y; Zheng MS; Wu QH
    Adv Mater; 2024 Jun; ():e2406135. PubMed ID: 38869350
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and Catalysis of the Potential-Limiting Step in Lithium-Sulfur Batteries.
    Zhong Y; Wang Q; Bak SM; Hwang S; Du Y; Wang H
    J Am Chem Soc; 2023 Apr; 145(13):7390-7396. PubMed ID: 36952313
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single step transformation of sulphur to Li2S2/Li2S in Li-S batteries.
    Helen M; Reddy MA; Diemant T; Golla-Schindler U; Behm RJ; Kaiser U; Fichtner M
    Sci Rep; 2015 Jul; 5():12146. PubMed ID: 26173723
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insight into sulfur reactions in Li-S batteries.
    Xu R; Belharouak I; Zhang X; Chamoun R; Yu C; Ren Y; Nie A; Shahbazian-Yassar R; Lu J; Li JC; Amine K
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):21938-45. PubMed ID: 25425055
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.