BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 26235979)

  • 1. Age-regulated function of autophagy in the mouse inner ear.
    de Iriarte Rodríguez R; Pulido S; Rodríguez-de la Rosa L; Magariños M; Varela-Nieto I
    Hear Res; 2015 Dec; 330(Pt A):39-50. PubMed ID: 26235979
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Autophagy in the Vertebrate Inner Ear.
    Magariños M; Pulido S; Aburto MR; de Iriarte Rodríguez R; Varela-Nieto I
    Front Cell Dev Biol; 2017; 5():56. PubMed ID: 28603711
    [TBL] [Abstract][Full Text] [Related]  

  • 3. "Autophagic flux" in normal mouse tissues: focus on endogenous LC3A processing.
    Zois CE; Giatromanolaki A; Sivridis E; Papaiakovou M; Kainulainen H; Koukourakis MI
    Autophagy; 2011 Nov; 7(11):1371-8. PubMed ID: 21997374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trophic effects of insulin-like growth factor-I (IGF-I) in the inner ear.
    Varela-Nieto I; Morales-Garcia JA; Vigil P; Diaz-Casares A; Gorospe I; Sánchez-Galiano S; Cañon S; Camarero G; Contreras J; Cediel R; Leon Y
    Hear Res; 2004 Oct; 196(1-2):19-25. PubMed ID: 15464297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Disruption in the autophagic process underlies the sensory neuropathy in dystonia musculorum mice.
    Ferrier A; De Repentigny Y; Lynch-Godrei A; Gibeault S; Eid W; Kuo D; Zha X; Kothary R
    Autophagy; 2015; 11(7):1025-36. PubMed ID: 26043942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential expression of LIM domain-only (LMO) genes in the developing mouse inner ear.
    Deng M; Pan L; Xie X; Gan L
    Gene Expr Patterns; 2006 Oct; 6(8):857-63. PubMed ID: 16597514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impaired autophagy flux is associated with neuronal cell death after traumatic brain injury.
    Sarkar C; Zhao Z; Aungst S; Sabirzhanov B; Faden AI; Lipinski MM
    Autophagy; 2014; 10(12):2208-22. PubMed ID: 25484084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Autophagy regulator BECN1 suppresses mammary tumorigenesis driven by WNT1 activation and following parity.
    Cicchini M; Chakrabarti R; Kongara S; Price S; Nahar R; Lozy F; Zhong H; Vazquez A; Kang Y; Karantza V
    Autophagy; 2014; 10(11):2036-52. PubMed ID: 25483966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative gene expression study of the vestibular organ of the Igf1 deficient mouse using whole-transcript arrays.
    Rodríguez-de la Rosa L; Sánchez-Calderón H; Contreras J; Murillo-Cuesta S; Falagan S; Avendaño C; Dopazo J; Varela-Nieto I; Milo M
    Hear Res; 2015 Dec; 330(Pt A):62-77. PubMed ID: 26341476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RNA microarray analysis in prenatal mouse cochlea reveals novel IGF-I target genes: implication of MEF2 and FOXM1 transcription factors.
    Sanchez-Calderon H; Rodriguez-de la Rosa L; Milo M; Pichel JG; Holley M; Varela-Nieto I
    PLoS One; 2010 Jan; 5(1):e8699. PubMed ID: 20111592
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Early otic development depends on autophagy for apoptotic cell clearance and neural differentiation.
    Aburto MR; Sánchez-Calderón H; Hurlé JM; Varela-Nieto I; Magariños M
    Cell Death Dis; 2012 Oct; 3(10):e394. PubMed ID: 23034329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prognostic impact of Beclin 1, p62/sequestosome 1 and LC3 protein expression in colon carcinomas from patients receiving 5-fluorouracil as adjuvant chemotherapy.
    Park JM; Huang S; Wu TT; Foster NR; Sinicrope FA
    Cancer Biol Ther; 2013 Feb; 14(2):100-7. PubMed ID: 23192274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CD47 deficiency confers cell and tissue radioprotection by activation of autophagy.
    Soto-Pantoja DR; Miller TW; Pendrak ML; DeGraff WG; Sullivan C; Ridnour LA; Abu-Asab M; Wink DA; Tsokos M; Roberts DD
    Autophagy; 2012 Nov; 8(11):1628-42. PubMed ID: 22874555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spinal autophagy is differently modulated in distinct mouse models of neuropathic pain.
    Berliocchi L; Maiarù M; Varano GP; Russo R; Corasaniti MT; Bagetta G; Tassorelli C
    Mol Pain; 2015 Feb; 11():3. PubMed ID: 25645145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Otic ablation of smoothened reveals direct and indirect requirements for Hedgehog signaling in inner ear development.
    Brown AS; Epstein DJ
    Development; 2011 Sep; 138(18):3967-76. PubMed ID: 21831920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Delayed inner ear maturation and neuronal loss in postnatal Igf-1-deficient mice.
    Camarero G; Avendano C; Fernandez-Moreno C; Villar A; Contreras J; de Pablo F; Pichel JG; Varela-Nieto I
    J Neurosci; 2001 Oct; 21(19):7630-41. PubMed ID: 11567053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression of transient receptor potential channel mucolipin (TRPML) and polycystine (TRPP) in the mouse inner ear.
    Takumida M; Anniko M
    Acta Otolaryngol; 2010 Feb; 130(2):196-203. PubMed ID: 20095091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impaired autophagy and APP processing in Alzheimer's disease: The potential role of Beclin 1 interactome.
    Salminen A; Kaarniranta K; Kauppinen A; Ojala J; Haapasalo A; Soininen H; Hiltunen M
    Prog Neurobiol; 2013; 106-107():33-54. PubMed ID: 23827971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Developmental expression of the actin depolymerizing factor ADF in the mouse inner ear and spiral ganglia.
    Herde MK; Friauf E; Rust MB
    J Comp Neurol; 2010 May; 518(10):1724-41. PubMed ID: 20235171
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression of the cytoskeletal protein MAP5 and its regulation by neurotrophin 3 (NT3) in the inner ear sensory neurons.
    San José I; Vázquez E; García-Atarés N; Rodriguez S; Vega JA; Represa J
    Anat Embryol (Berl); 1997 Mar; 195(3):299-310. PubMed ID: 9084828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.