BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 26236316)

  • 1. Co-operative intermolecular kinetics of 2-oxoglutarate dependent dioxygenases may be essential for system-level regulation of plant cell physiology.
    Kundu S
    Front Plant Sci; 2015; 6():489. PubMed ID: 26236316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unity in diversity, a systems approach to regulating plant cell physiology by 2-oxoglutarate-dependent dioxygenases.
    Kundu S
    Front Plant Sci; 2015; 6():98. PubMed ID: 25814993
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The DNA-repair protein AlkB, EGL-9, and leprecan define new families of 2-oxoglutarate- and iron-dependent dioxygenases.
    Aravind L; Koonin EV
    Genome Biol; 2001; 2(3):RESEARCH0007. PubMed ID: 11276424
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrative view of 2-oxoglutarate/Fe(II)-dependent oxygenase diversity and functions in bacteria.
    Jia B; Jia X; Kim KH; Jeon CO
    Biochim Biophys Acta Gen Subj; 2017 Feb; 1861(2):323-334. PubMed ID: 27919802
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-heme dioxygenases: cellular sensors and regulators jelly rolled into one?
    Ozer A; Bruick RK
    Nat Chem Biol; 2007 Mar; 3(3):144-53. PubMed ID: 17301803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Developing a colorimetric assay for Fe(II)/2-oxoglutarate-dependent dioxygenase.
    Guo C; Hu Y; Yang C; Nanjaraj Urs AN; Zhang Y
    Anal Biochem; 2018 May; 548():109-114. PubMed ID: 29499175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolism and epigenetics in the nervous system: Creating cellular fitness and resistance to neuronal death in neurological conditions via modulation of oxygen-, iron-, and 2-oxoglutarate-dependent dioxygenases.
    Karuppagounder SS; Kumar A; Shao DS; Zille M; Bourassa MW; Caulfield JT; Alim I; Ratan RR
    Brain Res; 2015 Dec; 1628(Pt B):273-287. PubMed ID: 26232572
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of the 2-oxoglutarate-dependent dioxygenases and implications for cancer.
    Vissers MC; Kuiper C; Dachs GU
    Biochem Soc Trans; 2014 Aug; 42(4):945-51. PubMed ID: 25109984
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Fe(II)/α-ketoglutarate-dependent taurine dioxygenases from Pseudomonas putida and Escherichia coli are tetramers.
    Knauer SH; Hartl-Spiegelhauer O; Schwarzinger S; Hänzelmann P; Dobbek H
    FEBS J; 2012 Mar; 279(5):816-31. PubMed ID: 22221834
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of strictly conserved histidine and arginine residues as part of the active site in Petunia hybrida flavanone 3beta-hydroxylase.
    Lukacin R; Britsch L
    Eur J Biochem; 1997 Nov; 249(3):748-57. PubMed ID: 9395322
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling the 2-His-1-carboxylate facial triad: iron-catecholato complexes as structural and functional models of the extradiol cleaving dioxygenases.
    Bruijnincx PC; Lutz M; Spek AL; Hagen WR; Weckhuysen BM; van Koten G; Gebbink RJ
    J Am Chem Soc; 2007 Feb; 129(8):2275-86. PubMed ID: 17266307
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The first direct characterization of a high-valent iron intermediate in the reaction of an alpha-ketoglutarate-dependent dioxygenase: a high-spin FeIV complex in taurine/alpha-ketoglutarate dioxygenase (TauD) from Escherichia coli.
    Price JC; Barr EW; Tirupati B; Bollinger JM; Krebs C
    Biochemistry; 2003 Jun; 42(24):7497-508. PubMed ID: 12809506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Large-scale examination of functional and sequence diversity of 2-oxoglutarate/Fe(II)-dependent oxygenases in Metazoa.
    Jia B; Tang K; Chun BH; Jeon CO
    Biochim Biophys Acta Gen Subj; 2017 Nov; 1861(11 Pt A):2922-2933. PubMed ID: 28847508
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A non-heme iron protein with heme tendencies: an investigation of the substrate specificity of thymine hydroxylase.
    Thornburg LD; Lai MT; Wishnok JS; Stubbe J
    Biochemistry; 1993 Dec; 32(50):14023-33. PubMed ID: 8268181
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glutarate L-2-hydroxylase (CsiD/GlaH) is an archetype Fe(II)/2-oxoglutarate-dependent dioxygenase.
    Herr CQ; Macomber L; Kalliri E; Hausinger RP
    Adv Protein Chem Struct Biol; 2019; 117():63-90. PubMed ID: 31564307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct spectroscopic detection of a C-H-cleaving high-spin Fe(IV) complex in a prolyl-4-hydroxylase.
    Hoffart LM; Barr EW; Guyer RB; Bollinger JM; Krebs C
    Proc Natl Acad Sci U S A; 2006 Oct; 103(40):14738-43. PubMed ID: 17003127
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studies on deacetoxycephalosporin C synthase support a consensus mechanism for 2-oxoglutarate dependent oxygenases.
    Tarhonskaya H; Szöllössi A; Leung IK; Bush JT; Henry L; Chowdhury R; Iqbal A; Claridge TD; Schofield CJ; Flashman E
    Biochemistry; 2014 Apr; 53(15):2483-93. PubMed ID: 24684493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanistic Insight on the Activity and Substrate Selectivity of Nonheme Iron Dioxygenases.
    de Visser SP
    Chem Rec; 2018 Oct; 18(10):1501-1516. PubMed ID: 29878456
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The 2-oxoglutarate-dependent dioxygenase superfamily participates in tanshinone production in Salvia miltiorrhiza.
    Xu Z; Song J
    J Exp Bot; 2017 Apr; 68(9):2299-2308. PubMed ID: 28398557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel flavonol 2-oxoglutarate dependent dioxygenase: affinity purification, characterization, and kinetic properties.
    Anzellotti D; Ibrahim RK
    Arch Biochem Biophys; 2000 Oct; 382(2):161-72. PubMed ID: 11068865
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.