These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 26236319)

  • 1. Harnessing phytomicrobiome signaling for rhizosphere microbiome engineering.
    Quiza L; St-Arnaud M; Yergeau E
    Front Plant Sci; 2015; 6():507. PubMed ID: 26236319
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rhizosphere microbiome: Engineering bacterial competitiveness for enhancing crop production.
    Kumar A; Dubey A
    J Adv Res; 2020 Jul; 24():337-352. PubMed ID: 32461810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Soil indigenous microbiome and plant genotypes cooperatively modify soybean rhizosphere microbiome assembly.
    Liu F; Hewezi T; Lebeis SL; Pantalone V; Grewal PS; Staton ME
    BMC Microbiol; 2019 Sep; 19(1):201. PubMed ID: 31477026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of plant domestication on rhizosphere microbiome assembly and functions.
    Pérez-Jaramillo JE; Mendes R; Raaijmakers JM
    Plant Mol Biol; 2016 Apr; 90(6):635-44. PubMed ID: 26085172
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancement of Plant Productivity in the Post-Genomics Era.
    Thao NP; Tran LS
    Curr Genomics; 2016 Aug; 17(4):295-6. PubMed ID: 27499678
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbially Mediated Plant Salt Tolerance and Microbiome-based Solutions for Saline Agriculture.
    Qin Y; Druzhinina IS; Pan X; Yuan Z
    Biotechnol Adv; 2016 Nov; 34(7):1245-1259. PubMed ID: 27587331
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phytomicrobiome for promoting sustainable agriculture and food security: Opportunities, challenges, and solutions.
    Chouhan GK; Verma JP; Jaiswal DK; Mukherjee A; Singh S; de Araujo Pereira AP; Liu H; Abd Allah EF; Singh BK
    Microbiol Res; 2021 Jul; 248():126763. PubMed ID: 33892241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New frontiers in agriculture productivity: Optimised microbial inoculants and in situ microbiome engineering.
    Qiu Z; Egidi E; Liu H; Kaur S; Singh BK
    Biotechnol Adv; 2019 Nov; 37(6):107371. PubMed ID: 30890361
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A review of root exudates and rhizosphere microbiome for crop production.
    Sun H; Jiang S; Jiang C; Wu C; Gao M; Wang Q
    Environ Sci Pollut Res Int; 2021 Oct; 28(39):54497-54510. PubMed ID: 34431053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Management of abiotic stresses by microbiome-based engineering of the rhizosphere.
    Tyagi R; Pradhan S; Bhattacharjee A; Dubey S; Sharma S
    J Appl Microbiol; 2022 Aug; 133(2):254-272. PubMed ID: 35352450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phytomicrobiome Coordination Signals Hold Potential for Climate Change-Resilient Agriculture.
    Lyu D; Backer R; Subramanian S; Smith DL
    Front Plant Sci; 2020; 11():634. PubMed ID: 32523595
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rhizosphere microbiome: Functional compensatory assembly for plant fitness.
    Xun W; Shao J; Shen Q; Zhang R
    Comput Struct Biotechnol J; 2021; 19():5487-5493. PubMed ID: 34712394
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New opportunities in plant microbiome engineering for increasing agricultural sustainability under stressful conditions.
    Afridi MS; Javed MA; Ali S; De Medeiros FHV; Ali B; Salam A; Sumaira ; Marc RA; Alkhalifah DHM; Selim S; Santoyo G
    Front Plant Sci; 2022; 13():899464. PubMed ID: 36186071
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Co-cropping with three phytoremediation crops influences rhizosphere microbiome community in contaminated soil.
    Brereton NJB; Gonzalez E; Desjardins D; Labrecque M; Pitre FE
    Sci Total Environ; 2020 Apr; 711():135067. PubMed ID: 31818595
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Harnessing plant microbiome for mitigating arsenic toxicity in sustainable agriculture.
    Ali S; Tyagi A; Mushtaq M; Al-Mahmoudi H; Bae H
    Environ Pollut; 2022 May; 300():118940. PubMed ID: 35122918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms.
    Mendes R; Garbeva P; Raaijmakers JM
    FEMS Microbiol Rev; 2013 Sep; 37(5):634-63. PubMed ID: 23790204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plant Holobiont Theory: The Phytomicrobiome Plays a Central Role in Evolution and Success.
    Lyu D; Zajonc J; Pagé A; Tanney CAS; Shah A; Monjezi N; Msimbira LA; Antar M; Nazari M; Backer R; Smith DL
    Microorganisms; 2021 Mar; 9(4):. PubMed ID: 33805166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The rhizosphere microbiome: Significance in rhizoremediation of polyaromatic hydrocarbon contaminated soil.
    Kotoky R; Rajkumari J; Pandey P
    J Environ Manage; 2018 Jul; 217():858-870. PubMed ID: 29660711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering Host Microbiome for Crop Improvement and Sustainable Agriculture.
    Kaul S; Choudhary M; Gupta S; Dhar MK
    Front Microbiol; 2021; 12():635917. PubMed ID: 34122359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: Action mechanisms and future prospects.
    Etesami H; Maheshwari DK
    Ecotoxicol Environ Saf; 2018 Jul; 156():225-246. PubMed ID: 29554608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.