These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
227 related articles for article (PubMed ID: 26236395)
1. Alleviation of carbon catabolite repression in Enterobacter aerogenes for efficient utilization of sugarcane molasses for 2,3-butanediol production. Jung MY; Jung HM; Lee J; Oh MK Biotechnol Biofuels; 2015; 8():106. PubMed ID: 26236395 [TBL] [Abstract][Full Text] [Related]
2. Engineered Enterobacter aerogenes for efficient utilization of sugarcane molasses in 2,3-butanediol production. Jung MY; Park BS; Lee J; Oh MK Bioresour Technol; 2013 Jul; 139():21-7. PubMed ID: 23644066 [TBL] [Abstract][Full Text] [Related]
3. Synthetic redesign of Escherichia coli W for faster metabolism of sugarcane molasses. Kim GY; Yang J; Han YH; Seo SW Microb Cell Fact; 2024 Sep; 23(1):242. PubMed ID: 39252026 [TBL] [Abstract][Full Text] [Related]
4. Metabolic engineering of Enterobacter aerogenes for 2,3-butanediol production from sugarcane bagasse hydrolysate. Um J; Kim DG; Jung MY; Saratale GD; Oh MK Bioresour Technol; 2017 Dec; 245(Pt B):1567-1574. PubMed ID: 28596073 [TBL] [Abstract][Full Text] [Related]
5. Enhanced production of 2,3-butanediol from sugarcane molasses. Dai JY; Zhao P; Cheng XL; Xiu ZL Appl Biochem Biotechnol; 2015 Mar; 175(6):3014-24. PubMed ID: 25586489 [TBL] [Abstract][Full Text] [Related]
6. Deletion of lactate dehydrogenase in Enterobacter aerogenes to enhance 2,3-butanediol production. Jung MY; Ng CY; Song H; Lee J; Oh MK Appl Microbiol Biotechnol; 2012 Jul; 95(2):461-9. PubMed ID: 22297429 [TBL] [Abstract][Full Text] [Related]
7. Improved 2,3-butanediol yield and productivity from lignocellulose biomass hydrolysate in metabolically engineered Enterobacter aerogenes. Kim DG; Yoo SW; Kim M; Ko JK; Um Y; Oh MK Bioresour Technol; 2020 Aug; 309():123386. PubMed ID: 32330805 [TBL] [Abstract][Full Text] [Related]
8. Engineered E. coli W enables efficient 2,3-butanediol production from glucose and sugar beet molasses using defined minimal medium as economic basis. Erian AM; Gibisch M; Pflügl S Microb Cell Fact; 2018 Nov; 17(1):190. PubMed ID: 30501633 [TBL] [Abstract][Full Text] [Related]
9. Simultaneous glucose and xylose utilization by an Kaplan NA; Islam KN; Kanis FC; Verderber JR; Wang X; Jones JA; Koffas MAG Appl Environ Microbiol; 2024 Feb; 90(2):e0216923. PubMed ID: 38289128 [TBL] [Abstract][Full Text] [Related]
10. Engineering of Bacillus subtilis for the Production of 2,3-Butanediol from Sugarcane Molasses. Deshmukh AN; Nipanikar-Gokhale P; Jain R Appl Biochem Biotechnol; 2016 May; 179(2):321-31. PubMed ID: 26825987 [TBL] [Abstract][Full Text] [Related]
11. Metabolic engineering of Enterobacter cloacae for high-yield production of enantiopure (2R,3R)-2,3-butanediol from lignocellulose-derived sugars. Li L; Li K; Wang Y; Chen C; Xu Y; Zhang L; Han B; Gao C; Tao F; Ma C; Xu P Metab Eng; 2015 Mar; 28():19-27. PubMed ID: 25499652 [TBL] [Abstract][Full Text] [Related]
12. Resveratrol production of a recombinant Kobayashi Y; Inokuma K; Matsuda M; Kondo A; Hasunuma T Biotechnol Notes; 2022; 3():1-7. PubMed ID: 39416443 [TBL] [Abstract][Full Text] [Related]
13. Systemic metabolic engineering of Enterobacter aerogenes for efficient 2,3-butanediol production. Lu P; Bai R; Gao T; Chen J; Jiang K; Zhu Y; Lu Y; Zhang S; Xu F; Zhao H Appl Microbiol Biotechnol; 2024 Jan; 108(1):146. PubMed ID: 38240862 [TBL] [Abstract][Full Text] [Related]
14. Efficient synthesis of 2-phenylethanol from L-phenylalanine by engineered Bacillus licheniformis using molasses as carbon source. Zhan Y; Zhou M; Wang H; Chen L; Li Z; Cai D; Wen Z; Ma X; Chen S Appl Microbiol Biotechnol; 2020 Sep; 104(17):7507-7520. PubMed ID: 32653931 [TBL] [Abstract][Full Text] [Related]
15. [Succinic acid production from sucrose and sugarcane molasses by metabolically engineered Escherichia coli]. Li F; Ma J; Wu M; Ji Y; Chen W; Ren X; Jiang M Sheng Wu Gong Cheng Xue Bao; 2015 Apr; 31(4):534-41. PubMed ID: 26380410 [TBL] [Abstract][Full Text] [Related]
16. Production of succinic acid from sucrose and sugarcane molasses by metabolically engineered Escherichia coli. Chan S; Kanchanatawee S; Jantama K Bioresour Technol; 2012 Jan; 103(1):329-36. PubMed ID: 22023966 [TBL] [Abstract][Full Text] [Related]
17. Elimination of carbon catabolite repression in Klebsiella oxytoca for efficient 2,3-butanediol production from glucose-xylose mixtures. Ji XJ; Nie ZK; Huang H; Ren LJ; Peng C; Ouyang PK Appl Microbiol Biotechnol; 2011 Feb; 89(4):1119-25. PubMed ID: 20957355 [TBL] [Abstract][Full Text] [Related]
18. Metabolic engineering of Thermoanaerobacterium aotearoense strain SCUT27 for biofuels production from sucrose and molasses. Dai K; Qu C; Feng J; Lan Y; Fu H; Wang J Biotechnol Biofuels Bioprod; 2023 Oct; 16(1):155. PubMed ID: 37865803 [TBL] [Abstract][Full Text] [Related]
19. Pathway engineering of Enterobacter aerogenes to improve acetoin production by reducing by-products formation. Jang JW; Jung HM; Im DK; Jung MY; Oh MK Enzyme Microb Technol; 2017 Nov; 106():114-118. PubMed ID: 28859805 [TBL] [Abstract][Full Text] [Related]
20. Application of byproducts from food processing for production of 2,3-butanediol using Bacillus amyloliquefaciens TUL 308. Sikora B; Kubik C; Kalinowska H; Gromek E; Białkowska A; Jędrzejczak-Krzepkowska M; Schüett F; Turkiewicz M Prep Biochem Biotechnol; 2016 Aug; 46(6):610-9. PubMed ID: 26460787 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]