These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 26236643)

  • 1. Determination of thermoelastic material properties by differential heterodyne detection of impulsive stimulated thermal scattering.
    Verstraeten B; Sermeus J; Salenbien R; Fivez J; Shkerdin G; Glorieux C
    Photoacoustics; 2015 Jun; 3(2):64-77. PubMed ID: 26236643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Picosecond acoustic transmission measurements. I. Transient grating generation and detection of acoustic responses in thin metal films.
    Slayton RM; Nelson KA
    J Chem Phys; 2004 Feb; 120(8):3908-18. PubMed ID: 15268557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoacoustic detection and optical spectroscopy of high-intensity focused ultrasound-induced thermal lesions in biologic tissue.
    Alhamami M; Kolios MC; Tavakkoli J
    Med Phys; 2014 May; 41(5):053502. PubMed ID: 24784408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis for angular dispersions of surface acoustic wave velocities in BCC crystals.
    Yin A; Xu X; Zhang S; Yan X; Lu M; Chen Y
    Ultrasonics; 2021 May; 113():106374. PubMed ID: 33561636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ microfluidic flow rate measurement based on near-field heterodyne grating method.
    Katayama K; Uchimura H; Sakakibara H; Kikutani Y; Kitamori T
    Rev Sci Instrum; 2007 Aug; 78(8):083101. PubMed ID: 17764307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling the Thermoelastic Sample Response for Subdiffraction Infrared Spectroscopic Imaging.
    Kenkel S; Bhargava R
    Chem Biomed Imaging; 2024 Jun; 2(6):413-421. PubMed ID: 38939874
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Texture in steel plates revealed by laser ultrasonic surface acoustic waves velocity dispersion analysis.
    Yin A; Wang X; Glorieux C; Yang Q; Dong F; He F; Wang Y; Sermeus J; Van der Donck T; Shu X
    Ultrasonics; 2017 Jul; 78():30-39. PubMed ID: 28282636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Circumferential thermoelastic waves in orthotropic cylindrical curved plates without energy dissipation.
    Jiangong Y; Bin W; Cunfu H
    Ultrasonics; 2010 Mar; 50(3):416-23. PubMed ID: 19857886
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bulk-wave and guided-wave photoacoustic evaluation of the mechanical properties of aluminum/silicon nitride double-layer thin films.
    Zhang F; Krishnaswamy S; Lilley CM
    Ultrasonics; 2006 Dec; 45(1-4):66-76. PubMed ID: 16899268
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Attometer resolution spectral analysis based on polarization pulling assisted Brillouin scattering merged with heterodyne detection.
    Preussler S; Schneider T
    Opt Express; 2015 Oct; 23(20):26879-87. PubMed ID: 26480198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Squeezing-enhanced heterodyne detection of 10  Hz atto-Watt optical signals.
    Xie B; Feng S
    Opt Lett; 2018 Dec; 43(24):6073-6076. PubMed ID: 30548007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical imaging through highly scattering media by use of heterodyne detection in the 1.3-microm wavelength region.
    Chan KP; Yamada M; Devaraj B; Inaba H
    Opt Lett; 1995 Mar; 20(5):492-4. PubMed ID: 19859231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stimulated orientational and thermal scatterings and self-starting optical phase conjugation with nematic liquid crystals.
    Khoo IC; Liang Y
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Nov; 62(5 Pt B):6722-33. PubMed ID: 11102024
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acoustic and relaxation processes in supercooled orthoterphenyl by optical-heterodyne transient grating experiment.
    Torre R; Taschin A; Sampoli M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Dec; 64(6 Pt 1):061504. PubMed ID: 11736188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface fluctuation scattering using grating heterodyne spectroscopy.
    Edwards RV; Sirohi RS; Mann JA; Shih LB; Lading L
    Appl Opt; 1982 Oct; 21(19):3555-68. PubMed ID: 20396275
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Active correction of thermal lensing through external radiative thermal actuation.
    Lawrence R; Ottaway D; Zucker M; Fritschel P
    Opt Lett; 2004 Nov; 29(22):2635-7. PubMed ID: 15552669
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heterodyne quasi-elastic light-scattering instrument for biomedical diagnostics.
    Lebedev AD; Ivanova MA; Lomakin AV; Noskin VA
    Appl Opt; 1997 Oct; 36(30):7518-22. PubMed ID: 18264264
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A sensitive, low noise, DC to 12 MHz, large area photodiode preamplifier for photothermal heterodyne imaging.
    Zeng ZC; Schultz ZD
    Rev Sci Instrum; 2018 Aug; 89(8):083105. PubMed ID: 30184642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical, experimental, and computational aspects of optical property determination of turbid media by using frequency-domain laser infrared photothermal radiometry.
    Nicolaides L; Chen Y; Mandelis A; Vitkin IA
    J Opt Soc Am A Opt Image Sci Vis; 2001 Oct; 18(10):2548-56. PubMed ID: 11583272
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.