These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 26236831)

  • 1. Tainted resurrection: metal pollution is linked with reduced hatching and high juvenile mortality in Daphnia egg banks.
    Rogalski MA
    Ecology; 2015 May; 96(5):1166-73. PubMed ID: 26236831
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sediment from lake with missing egg bank is toxic to hatchlings of model zooplankton: A reason to consider obligate dormancy in toxicological assessment.
    Patterson LN; Paulson DM; Colucciello VJ; Covi JA
    Aquat Toxicol; 2021 Jul; 236():105862. PubMed ID: 34049114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A mixture of environmental organic contaminants in lake sediments affects hatching from Daphnia resting eggs.
    Möst M; Chiaia-Hernandez AC; Frey MP; Hollender J; Spaak P
    Environ Toxicol Chem; 2015 Feb; 34(2):338-45. PubMed ID: 25394187
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pesticide exposure impacts not only hatching of dormant eggs, but also hatchling survival and performance in the water flea Daphnia magna.
    Navis S; Waterkeyn A; Voet T; De Meester L; Brendonck L
    Ecotoxicology; 2013 Jul; 22(5):803-14. PubMed ID: 23661096
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid evolutionary loss of metal resistance revealed by hatching decades-old eggs.
    Turko P; Sigg L; Hollender J; Spaak P
    Evolution; 2016 Feb; 70(2):398-407. PubMed ID: 26768308
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Timing matters: sensitivity of Daphnia magna dormant eggs to fenoxycarb exposure depends on embryonic developmental stage.
    Navis S; Waterkeyn A; Putman A; De Meester L; Vanermen G; Brendonck L
    Aquat Toxicol; 2015 Feb; 159():176-83. PubMed ID: 25546008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Historical metal concentrations in lacustrine food webs revealed using fossil ephippia from Daphnia.
    Wyn B; Sweetman JN; Leavitt PR; Donald DB
    Ecol Appl; 2007 Apr; 17(3):754-64. PubMed ID: 17494394
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reconstruction of centuries-old Daphnia communities in a lake recovering from acidification and metal contamination.
    Pollard HG; Colbourne JK; Keller W
    Ambio; 2003 Apr; 32(3):214-8. PubMed ID: 12839198
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Salinity tolerance in Daphnia magna: characteristics of genotypes hatching from mixed sediments.
    Ortells R; Reusch TB; Lampert W
    Oecologia; 2005 May; 143(4):509-16. PubMed ID: 15800749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metal stress in zooplankton diapause production: post-hatching response.
    Aránguiz-Acuña A; Pérez-Portilla P
    Ecotoxicology; 2017 Apr; 26(3):329-339. PubMed ID: 28105571
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Maladaptation to Acute Metal Exposure in Resurrected Daphnia ambigua Clones after Decades of Increasing Contamination.
    Rogalski MA
    Am Nat; 2017 Apr; 189(4):443-452. PubMed ID: 28350505
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toxicological effects of short-term resuspension of metal-contaminated freshwater and marine sediments.
    Fetters KJ; Costello DM; Hammerschmidt CR; Burton GA
    Environ Toxicol Chem; 2016 Mar; 35(3):676-86. PubMed ID: 26313755
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioavailability of sediment-associated Cu and Zn to Daphnia magna.
    Gillis PL; Wood CM; Ranville JF; Chow-Fraser P
    Aquat Toxicol; 2006 May; 77(4):402-11. PubMed ID: 16488492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sediment Zn-release during post-drought re-flooding: Assessing environmental risk to Hyalella azteca and Daphnia magna.
    Nedrich SM; Burton GA
    Environ Pollut; 2017 Nov; 230():1116-1124. PubMed ID: 28800684
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of the toxicity of river and creek sediments in Hungary with two different methods.
    Torokne A; Toro K
    Environ Toxicol; 2010 Oct; 25(5):504-9. PubMed ID: 20549625
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disruption of the hatching dynamics of zooplankton egg banks due to glyphosate application.
    Gutierrez MF; Battauz Y; Caisso B
    Chemosphere; 2017 Mar; 171():644-653. PubMed ID: 28056451
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temporal dispersal: ecological and evolutionary aspects of zooplankton egg banks and the role of sediment mixing.
    Hairston NG; Kearns CM
    Integr Comp Biol; 2002 Jul; 42(3):481-91. PubMed ID: 21708742
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluxes of nutrients and trace metals across the sediment-water interface controlled by sediment-capping agents: bentonite and sand.
    Han J; Ro HM; Cho KH; Kim KW
    Environ Monit Assess; 2016 Oct; 188(10):566. PubMed ID: 27633179
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Next-generation sequencing of DNA from resting eggs: signatures of eutrophication in a lake's sediment.
    Cordellier M; Wojewodzic MW; Wessels M; Kuster C; von Elert E
    Zoology (Jena); 2021 Apr; 145():125895. PubMed ID: 33561655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Land use, genetic diversity and toxicant tolerance in natural populations of Daphnia magna.
    Coors A; Vanoverbeke J; De Bie T; De Meester L
    Aquat Toxicol; 2009 Oct; 95(1):71-9. PubMed ID: 19747740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.