BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 26236852)

  • 1. Delivery of marine larvae to shore requires multiple sequential transport mechanisms.
    Pfaff MC; Branch GM; Fisher JL; Hoffmann V; Ellis AG; Largier JL
    Ecology; 2015 May; 96(5):1399-410. PubMed ID: 26236852
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nearshore larval retention in a region of strong upwelling and recruitment limitation.
    Morgan SG; Fisher JL; Miller SH; McAfee ST; Largier JL
    Ecology; 2009 Dec; 90(12):3489-502. PubMed ID: 20120816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surf-zone hydrodynamics alter phytoplankton subsidies affecting reproductive output and growth of tidal filter feeders.
    Salant CD; Shanks AL
    Ecology; 2018 Aug; 99(8):1878-1889. PubMed ID: 29888460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Larval vision contributes to gregarious settlement in barnacles: adult red fluorescence as a possible visual signal.
    Matsumura K; Qian PY
    J Exp Biol; 2014 Mar; 217(Pt 5):743-50. PubMed ID: 24574388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Local adaptation along a continuous coastline: prey recruitment drives differentiation in a predatory snail.
    Sanford E; Worth DJ
    Ecology; 2010 Mar; 91(3):891-901. PubMed ID: 20426346
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions between behaviour and physical forcing in the control of horizontal transport of decapod crustacean larvae.
    Queiroga H; Blanton J
    Adv Mar Biol; 2005; 47():107-214. PubMed ID: 15596167
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recruitment dynamics in complex life cycles.
    Roughgarden J; Gaines S; Possingham H
    Science; 1988 Sep; 241(4872):1460-6. PubMed ID: 11538249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Across-shelf transport of bivalve larvae: can the interface between a coastal current and inshore waters act as an ecological barrier to larval dispersal?
    Tilburg CE; McCartney MA; Yund PO
    PLoS One; 2012; 7(11):e48960. PubMed ID: 23152830
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of upwelling on larval dispersal and productivity of gooseneck barnacle populations in the Cantabrian Sea: management implications.
    Rivera A; Weidberg N; Pardiñas AF; González-Gil R; García-Flórez L; Acuña JL
    PLoS One; 2013; 8(11):e78482. PubMed ID: 24236020
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Observations of large-amplitude cross-shore internal bores near the shelf break, Santa Monica Bay, CA.
    Noble MA; Xu JP
    Mar Environ Res; 2003; 56(1-2):127-49. PubMed ID: 12648953
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Planktonic Subsidies to Surf-Zone and Intertidal Communities.
    Morgan SG; Shanks AL; MacMahan JH; Reniers AJHM; Feddersen F
    Ann Rev Mar Sci; 2018 Jan; 10():345-369. PubMed ID: 28846492
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Waves cue distinct behaviors and differentiate transport of congeneric snail larvae from sheltered versus wavy habitats.
    Fuchs HL; Gerbi GP; Hunter EJ; Christman AJ
    Proc Natl Acad Sci U S A; 2018 Aug; 115(32):E7532-E7540. PubMed ID: 30037993
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Larval development and settlement of a whale barnacle.
    Nogata Y; Matsumura K
    Biol Lett; 2006 Mar; 2(1):92-3. PubMed ID: 17148335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrodynamic sensing and behavior by oyster larvae in turbulence and waves.
    Fuchs HL; Gerbi GP; Hunter EJ; Christman AJ; Diez FJ
    J Exp Biol; 2015 May; 218(Pt 9):1419-32. PubMed ID: 25788721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Instantaneous Flow Structures and Opportunities for Larval Settlement: Barnacle Larvae Swim to Settle.
    Larsson AI; Granhag LM; Jonsson PR
    PLoS One; 2016; 11(7):e0158957. PubMed ID: 27463968
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Barnacle larvae actively select flow environments supporting post-settlement growth and survival.
    Larsson AI; Jonsson PR
    Ecology; 2006 Aug; 87(8):1960-6. PubMed ID: 16937634
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Morphology-flow interactions lead to stage-selective vertical transport of larval sand dollars in shear flow.
    Clay TW; Grünbaum D
    J Exp Biol; 2010 Apr; 213(Pt 8):1281-92. PubMed ID: 20348340
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complex larval connectivity patterns among marine invertebrate populations.
    Becker BJ; Levin LA; Fodrie FJ; McMillan PA
    Proc Natl Acad Sci U S A; 2007 Feb; 104(9):3267-72. PubMed ID: 17360636
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of conspecific cues in Balanus amphitrite Darwin (Cirripedia) settlement assays: continued argument for the single-larva assay.
    Elbourne PD; Veater RA; Clare AS
    Biofouling; 2008; 24(2):87-96. PubMed ID: 18176875
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surfzone hydrodynamics as a key determinant of spatial variation in rocky intertidal communities.
    Morgan SG; Shanks AL; Fujimura AG; Reniers AJ; MacMahan J; Griesemer CD; Jarvis M; Brown J
    Proc Biol Sci; 2016 Oct; 283(1840):. PubMed ID: 27733543
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.