These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 26236896)

  • 1. Vegetation exerts a greater control on litter decomposition than climate warming in peatlands.
    Ward SE; Orwin KH; Ostle NJ; Briones JI; Thomson BC; Griffiths RI; Oakley S; Quirk H; Bardget RD
    Ecology; 2015 Jan; 96(1):113-23. PubMed ID: 26236896
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contrasting growth responses of dominant peatland plants to warming and vegetation composition.
    Walker TN; Ward SE; Ostle NJ; Bardgett RD
    Oecologia; 2015 May; 178(1):141-51. PubMed ID: 25687830
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vascular plants promote ancient peatland carbon loss with climate warming.
    Walker TN; Garnett MH; Ward SE; Oakley S; Bardgett RD; Ostle NJ
    Glob Chang Biol; 2016 May; 22(5):1880-9. PubMed ID: 26730448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Litter evenness influences short-term peatland decomposition processes.
    Ward SE; Ostle NJ; McNamara NP; Bardgett RD
    Oecologia; 2010 Oct; 164(2):511-20. PubMed ID: 20431923
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of arctic shrub expansion on biophysical vs. biogeochemical drivers of litter decomposition.
    DeMarco J; Mack MC; Bret-Harte MS
    Ecology; 2014 Jul; 95(7):1861-75. PubMed ID: 25163119
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plant functional group controls litter decomposition rate and its temperature sensitivity: An incubation experiment on litters from a boreal peatland in northeast China.
    Mao R; Zhang X; Song C; Wang X; Finnegan PM
    Sci Total Environ; 2018 Jun; 626():678-683. PubMed ID: 29898554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contrasting above- and belowground organic matter decomposition and carbon and nitrogen dynamics in response to warming in High Arctic tundra.
    Blok D; Faucherre S; Banyasz I; Rinnan R; Michelsen A; Elberling B
    Glob Chang Biol; 2018 Jun; 24(6):2660-2672. PubMed ID: 29235209
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Warming effects on greenhouse gas fluxes in peatlands are modulated by vegetation composition.
    Ward SE; Ostle NJ; Oakley S; Quirk H; Henrys PA; Bardgett RD
    Ecol Lett; 2013 Oct; 16(10):1285-93. PubMed ID: 23953244
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitrogen supply differentially affects litter decomposition rates and nitrogen dynamics of sub-arctic bog species.
    Aerts R; van Logtestijn RS; Karlsson PS
    Oecologia; 2006 Jan; 146(4):652-8. PubMed ID: 16167147
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Litter decay controlled by temperature, not soil properties, affecting future soil carbon.
    Gregorich EG; Janzen H; Ellert BH; Helgason BL; Qian B; Zebarth BJ; Angers DA; Beyaert RP; Drury CF; Duguid SD; May WE; McConkey BG; Dyck MF
    Glob Chang Biol; 2017 Apr; 23(4):1725-1734. PubMed ID: 27633488
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vascular plant-mediated controls on atmospheric carbon assimilation and peat carbon decomposition under climate change.
    Gavazov K; Albrecht R; Buttler A; Dorrepaal E; Garnett MH; Gogo S; Hagedorn F; Mills RTE; Robroek BJM; Bragazza L
    Glob Chang Biol; 2018 Sep; 24(9):3911-3921. PubMed ID: 29569798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of nitrogen additions on litter decomposition, nutrient dynamics, and enzymatic activity of two plant species in a peatland in Northeast China.
    Song Y; Song C; Ren J; Tan W; Jin S; Jiang L
    Sci Total Environ; 2018 Jun; 625():640-646. PubMed ID: 29304502
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shrub encroachment in Arctic tundra: Betula nana effects on above- and belowground litter decomposition.
    McLaren JR; Buckeridge KM; van de Weg MJ; Shaver GR; Schimel JP; Gough L
    Ecology; 2017 May; 98(5):1361-1376. PubMed ID: 28263375
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental Climate Change Modifies Degradative Succession in Boreal Peatland Fungal Communities.
    Asemaninejad A; Thorn RG; Lindo Z
    Microb Ecol; 2017 Apr; 73(3):521-531. PubMed ID: 27744477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Warming alters cascading effects of a dominant arthropod predator on fungal community composition in the Arctic.
    Koltz AM; Koyama A; Wallenstein M
    mBio; 2024 Jun; ():e0059024. PubMed ID: 38832779
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ carbon turnover dynamics and the role of soil microorganisms therein: a climate warming study in an Alpine ecosystem.
    Djukic I; Zehetner F; Watzinger A; Horacek M; Gerzabek MH
    FEMS Microbiol Ecol; 2013 Jan; 83(1):112-24. PubMed ID: 22809312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decoupling the direct and indirect effects of climate on plant litter decomposition: Accounting for stress-induced modifications in plant chemistry.
    Suseela V; Tharayil N
    Glob Chang Biol; 2018 Apr; 24(4):1428-1451. PubMed ID: 28986956
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactions among fungal community structure, litter decomposition and depth of water table in a cutover peatland.
    Trinder CJ; Johnson D; Artz RR
    FEMS Microbiol Ecol; 2008 Jun; 64(3):433-48. PubMed ID: 18430005
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Global negative vegetation feedback to climate warming responses of leaf litter decomposition rates in cold biomes.
    Cornelissen JH; van Bodegom PM; Aerts R; Callaghan TV; van Logtestijn RS; Alatalo J; Chapin FS; Gerdol R; Gudmundsson J; Gwynn-Jones D; Hartley AE; Hik DS; Hofgaard A; Jónsdóttir IS; Karlsson S; Klein JA; Laundre J; Magnusson B; Michelsen A; Molau U; Onipchenko VG; Quested HM; Sandvik SM; Schmidt IK; Shaver GR; Solheim B; Soudzilovskaia NA; Stenström A; Tolvanen A; Totland Ø; Wada N; Welker JM; Zhao X;
    Ecol Lett; 2007 Jul; 10(7):619-27. PubMed ID: 17542940
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Melanin mitigates the accelerated decay of mycorrhizal necromass with peatland warming.
    Fernandez CW; Heckman K; Kolka R; Kennedy PG
    Ecol Lett; 2019 Mar; 22(3):498-505. PubMed ID: 30609141
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.