These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 26236912)

  • 1. Spatial complexity reduces interaction strengths in the meta-food web of a river floodplain mosaic.
    Bellmore JR; Baxter CV; Connolly PJ
    Ecology; 2015 Jan; 96(1):274-83. PubMed ID: 26236912
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The floodplain food web mosaic: a study of its importance to salmon and steelhead with implications for their recovery.
    Bellmore JR; Baxter CV; Martens K; Connolly PJ
    Ecol Appl; 2013 Jan; 23(1):189-207. PubMed ID: 23495646
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Landscape diversity promotes stable food-web architectures in large rivers.
    Scholl EA; Cross WF; Guy CS; Dutton AJ; Junker JR
    Ecol Lett; 2023 Oct; 26(10):1740-1751. PubMed ID: 37497804
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Food web persistence is enhanced by non-trophic interactions.
    Hammill E; Kratina P; Vos M; Petchey OL; Anholt BR
    Oecologia; 2015 Jun; 178(2):549-56. PubMed ID: 25656586
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tracking the resource pulse: Movement responses of fish to dynamic floodplain habitat in a tropical river.
    Crook DA; Buckle DJ; Morrongiello JR; Allsop QA; Baldwin W; Saunders TM; Douglas MM
    J Anim Ecol; 2020 Mar; 89(3):795-807. PubMed ID: 31750933
    [TBL] [Abstract][Full Text] [Related]  

  • 6. River food webs: an integrative approach to bottom-up flow webs, top-down impact webs, and trophic position.
    Benke AC
    Ecology; 2018 Jun; 99(6):1370-1381. PubMed ID: 29604060
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of resource availability and hydrological regime on autochthonous and allochthonous carbon in the food web of a large cross-border river (China).
    Zheng Y; Niu J; Zhou Q; Xie C; Ke Z; Li D; Gao Y
    Sci Total Environ; 2018 Jan; 612():501-512. PubMed ID: 28865268
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Top-down control of prey increases with drying disturbance in ponds: a consequence of non-consumptive interactions?
    Greig HS; Wissinger SA; McIntosh AR
    J Anim Ecol; 2013 May; 82(3):598-607. PubMed ID: 23402626
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complexity in quantitative food webs.
    Banasek-Richter C; Bersier LF; Cattin MF; Baltensperger R; Gabriel JP; Merz Y; Ulanowicz RE; Tavares AF; Williams DD; de Ruiter PC; Winemiller KO; Naisbit RE
    Ecology; 2009 Jun; 90(6):1470-7. PubMed ID: 19569361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energetic constraints imposed on trophic interaction strengths enhance resilience in empirical and model food webs.
    Li X; Yang W; Gaedke U; de Ruiter PC
    J Anim Ecol; 2021 Sep; 90(9):2065-2076. PubMed ID: 33844855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Press perturbations and indirect effects in real food webs.
    Montoya JM; Woodward G; Emmerson MC; Solé RV
    Ecology; 2009 Sep; 90(9):2426-33. PubMed ID: 19769121
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluating the effects of trophic complexity on a keystone predator by disassembling a partial intraguild predation food web.
    Davenport JM; Chalcraft DR
    J Anim Ecol; 2012 Jan; 81(1):242-50. PubMed ID: 21950407
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Food web structure in a harsh glacier-fed river.
    Clitherow LR; Carrivick JL; Brown LE
    PLoS One; 2013; 8(4):e60899. PubMed ID: 23613751
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence supporting the importance of terrestrial carbon in a large-river food web.
    Zeug SC; Winemiller KO
    Ecology; 2008 Jun; 89(6):1733-43. PubMed ID: 18589537
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Allometric degree distributions facilitate food-web stability.
    Otto SB; Rall BC; Brose U
    Nature; 2007 Dec; 450(7173):1226-9. PubMed ID: 18097408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Incorporating food web dynamics into ecological restoration: a modeling approach for river ecosystems.
    Bellmore JR; Benjamin JR; Newsom M; Bountry JA; Dombroski D
    Ecol Appl; 2017 Apr; 27(3):814-832. PubMed ID: 28078716
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Foundation species enhance food web complexity through non-trophic facilitation.
    Borst ACW; Verberk WCEP; Angelini C; Schotanus J; Wolters JW; Christianen MJA; van der Zee EM; Derksen-Hooijberg M; van der Heide T
    PLoS One; 2018; 13(8):e0199152. PubMed ID: 30169517
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemolithoautotrophy supports macroinvertebrate food webs and affects diversity and stability in groundwater communities.
    Hutchins BT; Engel AS; Nowlin WH; Schwartz BF
    Ecology; 2016 Jun; 97(6):1530-42. PubMed ID: 27459783
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dam regulation and riverine food-web structure in a Mediterranean river.
    Mor JR; Ruhí A; Tornés E; Valcárcel H; Muñoz I; Sabater S
    Sci Total Environ; 2018 Jun; 625():301-310. PubMed ID: 29289778
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of trout in stream food webs: integrating evidence from field surveys and experiments.
    Meissner K; Muotka T
    J Anim Ecol; 2006 Mar; 75(2):421-33. PubMed ID: 16637995
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.